Measuring Raindrops

How big is a raindrop?

Collect data and analyse mode, mean and median, range, interquartile range and standard deviation

Introduction: There are many words and many descriptions for different types of rain: fine rain, heavy rain, pelting down, mizzling. In fact the BBC news magazine has an article entitled “Fifty words for rain”. But how big is a rain drop? Does the size vary depending upon the time of year or the type of rain?

Aim: To collect data, manipulate data and analyse data to calculate and compare the size of raindrops.

Equipment Required

  • A platform of area of about 0.5m2 with edges.
  • Enough flour to cover the platform to a depth of about 3cm
  • An accurate measuring device, e.g. electronic sliding callipers.

Collecting the data

  • Cover the platform with the flour.
  • Place the platform in the rain for about 90 seconds, long enough for about 200 raindrops to hit the platform.
  • Use your measuring device to measure the diameter of the raindrops and record the data.

Manipulating, analysing, displaying and interpreting the data

There follows a number of suggestions of how the data can be used depending upon the ability of the students.

1. Calculate the mode, mean and median diameter of raindrop. Which is the most appropriate measure to use? Compare results from different groups.

2. Group the data into appropriate groups. Represent the data using histograms. Discuss whether it is appropriate to have all the groups the same size of vary the size of the groups. Compare the results from different groups. Compare data collected at different times of year if possible.

3. Calculate the spread of the data using range, interquartile range and standard deviation.

4. Discuss different methods of displaying the data. Is the data discrete or continuous? Should a bar chart or a histogram be used? This activity is ideal for discussing when a histogram should be used and the reasons for using a histogram.

5. Draw box plots to show the distribution of the data. Compare the spread of different data sets. What does this information tell us?

6. Write a report comparing the size of raindrops.

Extension

It may be appropriate for Advanced level students to explore the log-normal distribution as discussed in the accompanying article A Low Cost Experiment for determining Raindrop size Distribution.

Further Background Information

Making rainfall features fun: scientific activities for teaching children aged 5–12 years.

This lovely animation explores integration through Is it better to walk or run in the rain?

With thanks to Stephen Lyon at the National STEM centre

Does it Always Rain from Dark Clouds?

A Level

Independent Investigation

A guide to collecting weather data from the RGS student guide to the A Level independent investigation (Non-examined Assessment – NEA) and some further ideas.

Video Link: https://www.youtube.com/embed/Y_UdPbThbtQ

Carbon and Water Cycles; Weather and Climate

Carbon, water, weather and climate a PowerPoint presentation focussing on recent changes to the carbon and water cycles, and how the two cycles interact.

Climate and Weather – an overview for A level, on the RGS website.

Climate change updates for A level geography – supporting the 2016 specifications.

Background information for teachers on the water cycle and the carbon cycle.

Video link: https://www.youtube.com/embed/LBe4LTLOLvU

Deforestation, the water cycle and the carbon cycle in the Amazon.

Extensive information from the Cool Geography site: Case study of a tropical rainforest setting to illustrate and analyse key themes in water and carbon cycles and their relationship to environmental change and human activity and more generally on the carbon and water cycles.

Depressions, Anticyclones and Synoptic Charts

Weather Charts

Weather Systems

Mid-latitude weather systems video (with downloadable resources)

Depression based exercise where students draw contours of temperature, pressure and precipitation to work out what the system looks like: Student worksheets and notes for teachers. Simpler versions of the same exercise can be found on the KS3/4 web pages.

Use WOW data to track a cold front across the UK and work out its speed.

track a cold front across the UK and work out its speed practical excercises.

weather forecasting exercise

Shipping Forecast weather system excercise teachers notes and worksheet.

There are some more teaching resources covering weather systems and weather maps on the GCSE resources page.

Tropical Weather

Monsoons – a resource looking at the link between rainfall and food production in India. Teachers notes and Excel data sheet.

Some useful links about Super typhoon Haiyan/ Yolanda

Extreme Weather

Extreme Weather

Extreme weather in the UK

Climate and Climate Change

Climate Change with sections on atmospheric structure, composition, solar radiation, climate feedback mechanisms and ozone depletion.

Other Weather

Clouds

A case study of orographic rainfall and Foehn winds in Scotland with images for students Image 1Image 2Image 3Image 4Image 5.

An exercise using height/ temperature graphs to investigate atmospheric stability, lapse rates and cloud formation with a worksheet for students and an introductory Powerpoint.

Investigate How big is a raindrop collect data and analyse mode, mean and median, range, interquartile range and standard deviation etc.

This lovely animation explores integration through Is it better to walk or run in the rain?.

A one hour tutorial on Climate variability, change and water resources from MetEd (requires free registration). The level is suitable for A level.

GCSE resources

Data Analysis

Activities Using Weather and Climate Data

1. Temperature differences (current weather)

To answer this question you will need to visit the Met Office website.

(a) Go to the UK data pages and complete the table below for London and the nearest weather station to your school.

(b) Describe the differences in the weather. 

(b) Now visit the world data pages and fill in the values for Adelaide in Australia (Mediterranean), Rothera in the British Antarctic Territory (Polar) and Singapore (Tropical).

(c) Suggest reasons that explain these differences in temperature and general weather conditions.

TemperatureWeather
London
Nearest UK location
Adelaide
Barrow
Singapore

2.Travel writer

You are a travel writer for a national newspaper. Your Editor has asked you to write the weather section for a special supplement the newspaper is publishing for readers planning a short-break holiday this weekend to various British towns and cities. The Editor wants you to cover Bournemouth, Aberdeen and Llangollen.

(a) Consult the forecasts for Bournemouth, Aberdeen and Llangollen and click on ‘last 24 hours (below the forecast) to gain an idea of weather conditions over the past 24 hours. Write a paragraph describing the conditions at each of the stations.

(b) Now use the forecasts for the UK to see what the weather might be like for the next couple of days at each station. Write another paragraph describing the future weather conditions at each of the stations.

3. Climate zones

(a) Consult the Met Office pages and fill in the temperature information in the table below for each of the weather stations in the polar, temperate and tropical climatic zones. Select ‘last 24 hours’ and choose the same time of day for each location. You’ll find the latitude in ‘location details’ at the bottom of the page. 

(b) Use the location details to record the latitude of each weather station and add these values to the table.

(c) Now use this data to draw a scattergraph, plotting latitude along the horizontal axis, allowing for locations in both the northern and southern hemispheres along the same axis. Then add temperature on the vertical axis, remembering to allow for negative values on your vertical axis.

(d) Describe the general pattern that your scattergraph shows.

(e) Suggest reasons to explain this pattern.

Location

Latitude

Temperature

Kevo (Finland)

  

Stockholm/Bromma (Sweden)

  

Riga (Latvia)

  

Brno (Czech Republic)

  

Milano/Linate (Italy)

  

Lisboa/Gago Coutinho (Portugal)

  

Cairo International (Egypt)

  

Eldoret International Airport (Kenya)

  

Thabazimbi (South Africa)

  

Maputo/Mavalane (Mozambique)

  

Harare (Zimbabwe)

  

Kano (Niger)

  

Seeb (Oman)

  

Peshawar (Pakistan)

  

New Delhi Safdarjung (India)

  

Bishkek International (Krygyzstan)

  

Bejing International (China)

  

Bangkok (Thailand)

  

Jakarta International (Indonesia)

  

Adelaide International (Australia)

  

Paraparaumu (New Zealand)

  

Ulaanbaatar International (Mongolia)

  

Vunisea (Fiji)

  

Barrow (USA)

  

Ukiivit (Greenland)

  

Houston George Bush Intercontinental (USA)

  

Salt Lake City (USA)

  

Puebla Pue. (Mexico)

  

Caracas-Maiquetia International (Venezuela)

  

Manaus International (Brazil)

  

Carrasco (Uruguay)

  

Rio Gallegos International (Argentina)

  

Web page reproduced with the kind permission of the Met Office

Rainforest Deforestation the Carbon and Water Cycles

This news item from NASA relates to this animation, as does this Nature Communication from October 2020.

Suggested learning activities:

Data and GIS exercise for A Level students

Explore leaf area, evapotranspiration and temperature data using various statistical techniques to explore the relationship between deforestation and weather on this resource on the RGS website.

Activity 1:
Ask students to write a voiceover for the film, demonstrating their understanding of the concepts involved.

Activity 2:
Complete this sentence based on the film:
When rainforests are deforested, places downwind are left with more/ less/ the same amount of rainfall and greater/ less/ the same amount of flood risk.

Activity 3:
Look at www.globalforestwatch.org/map and identify a Tropical region which has experienced deforestation in the last decade.
Look at earth.nullschool.net. What is the prevailing wind direction in that region?
Using www.google.com/maps, write a paragraph explaining how you think the water cycle has been affected by deforestation for a place downwind from the rainforest region you identified.

Activity 4:
Having watched the animation, use https://www.globalforestwatch.org/map , http://earth.nullschool.net and https://www.google.com/maps to write a paragraph explaining how you think the water cycle has been affected by deforestation for a specific place downwind and/ or downriver from a rainforest region.

Activity 5:
Having watched the animation, read these articles from Nature and NASA (noting that this predates the Nature article), NASA (2019)Geography Review (p22 – 25) and Carbon Brief.
Summarise the impact of tropical deforestation on the carbon and water cycles.

More information about the water cycle and climate change and the water cycle and an excellent summary from Cool Geography.

Using Tree Rings for Past Weather and Climate

Using tree rings to teach weather, climate, past climate change, proxy climate records, correlation, photosynthesis, regression, the carbon cycle, isotopes and more

close up of tree rings

On the BBC news: the research from Swansea University that supports these resources.

1) Show the Film

2) Play the Game

Trees can tell stories about past climates. Scientists can decode the pattern of a tree’s growth rings to learn which years were warm or cool, and which were wet or dry. Scientists combine the ring patterns in living trees with wood from trees that lived long ago, such as the wood found in old logs, wooden furniture, buildings like log cabins, and wooden ships, in order to build a longer historical record of climate than the lifespan of a single tree can provide.

You can decode tree ring data to learn about past climates using the simulation above. Line up tree ring patterns to reveal temperatures in the past. The simulation has two versions. The standard version is the best place to start. The custom version for schools in the United Kingdom was created to go along with a specific curriculum. It has a longer timeline and includes information about some historical events.

The process scientists use to build a climate history timeline has an extra step that, for the sake of simplicity, is not represented in this simulation. When scientists decode long climate records from tree ring patterns, they don’t physically line up the tree core samples next to each other. Instead, they make graphs called skeleton plots for each sample. They combine the skeleton plots from many samples to build a climate history timeline.

Data source for this simulation
The tree ring data in this simulation is from oak trees in southern England. The data, from the UK Oak Project, was collected from living trees, logs in bogs, beams and rafters in old buildings, old wooden furniture, and wall paintings in a farmhouse dating back to 1592. One sample came from the windlass – the wooden crank used to raise and lower a castle’s gate – of the Byward Tower in the Tower of London.

Collect tree ring samples, align the samples to create a 300 year record and see what weather and climate events emerge here.

Alternatively, use the simple paper-strip version from UCAR.

3) Choose the Relevant Teaching Resource

ResourceSubjectSuggested age range
The Difference between Weather and Climate Teachers’ notes and Worksheet.Geography11-14 (KS3)
The impact of volcanoes on climate Teachers’ notes and Worksheet.Geography11-14 (KS3)
Weather detective – the weather of 1826 Teachers’ notes and Worksheet.Geography11-14 (KS3)
Past Climate Change Teachers’ notes and Worksheet.Geography11-14 (KS3)
Correlating Tree Rings and Temperature Notes for Teachers and worksheets A , B, C, D and E and/ or spreadsheets A , B, C, D and EGeography11-16 (KS3/4)
Solar, Volcanic and Anthropogenic Climate Change Teachers’ notes and WorksheetGeography14-16 (KS4)
The Factors Affecting Photosynthesis Teachers’ notes and WorksheetBiology11-14 (KS3)

Watching the Earth

A series of downloadable lesson plans and teacher’s notes for science GCSE based on using the Gravity field and steady state Ocean Circulation Explorer satellite (GOCE).

Produced by Julie Boyle

Teachers GuidanceTeachers’ Notes

Lesson One

Introduction to GOCELesson Two
Introduction to GOCE

FreefallLesson Three
Freefall

PendulumLesson Four
Pendulum

Hooke's LawLesson Five
Hooke’s Law

Newton's LawLesson Six
Newton’s Law Pt 1

Newton's Law Pt 2Lesson Six
Newton’s law Pt 2

AltimetryLesson Seven
Altimetry

Excel SpreadsheetLesson Seven
Excel Spreadsheet

Doppler EffectLesson Eight
Doppler Effect

Bottom PressureLesson Nine
Bottom Effect

InterferometryLesson Ten
Interferometry

Atmospheric SoundingLesson Eleven
Atmospheric Sounding

Fluid DynamicsLesson Twelve
Fluid Dynamics

Satellites

Artificial satellites

Key Stage 3, Science
GRAVITY AND SPACE


Prior Learning

The solar system is held in place by gravitational attraction and that natural satellites orbit.

Objectives

By the end of the lesson:

All students will know that:

  • satellites orbit objects that are much larger than themselves
  • natural and artificial satellites are kept in orbit by gravitational attraction
  • there are two main types of orbit

Most students will know that:

  • the two types of orbit are geostationary and polar orbiting
  • artificial satellites have a variety of uses, including meteorological, communications, scientific research, telescopes.

Some students will know that:

  • details about specific artificial satellite
  • examples of information that can be gained from satellites

Lesson plan

Starter

Challenge the students to answer the question: “How many things can you think of that we use artificial satellites for?”.

Satellite examples could include weather observations (monitoring weather and climate), TV broadcast, telecommunications, scientific research, environmental monitoring, surveillance (spying!/military intelligence), astronomical (telescopes and measurements from outside our atmosphere), navigational (e.g.GPS)

Lesson resources

PDF document containing the starter question

Main Body

Recap to allow students to remember what a satellite is.

Get students to try making their own satellite using the template supplied.

Meteorology from space
Satellites have been used for weather observations since 1959 when Vanguard 2 was launched.

Types of Satellite
There are two types of satellite orbit; polar orbiting and geostationary. Both are useful for meteorology and other things.

Make your own satellite

Artificial satellites slideshow.

Plenary

Get students to use the artificial satellites worksheet to demonstrate they understand the differences between polar orbiting and geostationary satellites.

Artificial satellites worksheet

Web page reproduced with the kind permission of the Met Office.

Have a look at our ‘Watching the Earth‘ resources.

Satellites

satellites above the earthSatellites provide a huge variety of information. They carry instruments that relay telecommunications signals (telephone messages, TV pictures, emergency messages from ships and aircraft, etc.), help in navigation, measure changes in vegetation or movements in the earth’s surface and observe the atmosphere. Those that observe the atmosphere are known as weather satellites and the information they provide is used by weather forecasters, as well as others with an interest in the weather. Most people are now familiar with the pictures that are shown on the TV Weather Forecast, but there are other types of observation being made in the atmosphere.

The first successful weather satellite was called TIROS1 and was launched on 1 April 1960. The subsequent launch of other observing systems has resulted in the creation of an imaging network on a truly global scale. Information is now available for inhospitable land areas and the oceans, where weather data were previously largely unavailable.

The advent of weather satellites has also provided a continuous, automatic feed of data, with a coverage and resolution (horizontal, vertical and temporal) not possible by any other means. Therefore, we can now ‘look down’ and record what is happening, and the information from satellites helps in the prediction of changes in the weather.

Types of satellite

There are two types of satellite providing weather data.

Geostationary – these are positioned at a height of 35,780 km above the equator, and ‘hang’ over the same spot on the Earth’s surface all the time. Meteosat, the geostationary satellite operated by European countries, is positioned over the equator on the Greenwich meridian and covers Africa, Europe, the Middle East, much of the Atlantic Ocean and the western Indian Ocean. The present satellite is called MSG and provides pictures every 15 minutes. It is possible to receive images with a resolution that is similar to that usually available from the much lower polar-orbiting satellites, although a very powerful computer is needed to process the data for much more than a relatively small area.

Polar-orbiting – these pass over the Earth from pole to pole. The NOAA satellites, operated by the USA, orbit at a height of around 850 km and take around 100 minutes to complete each orbit. During this time, the Earth has turned by about 25 degrees, so the satellite views a different part of the surface each time it passes. A European satellite, called MetOp-A, was launched on 19th October 2006, and is also a polar orbiter. As the orbit is much lower than that of the geostationary satellites, the images provide detailed information about the cloud structure. The UK receives images from a set of three passes, twice a day, from each satellite. The first pass is over the eastern Mediterranean, the second roughly over the UK, and the third over the eastern Atlantic. One set of passes occurs during the day and the other at night. There are also instruments that measure the temperature vertically through the atmosphere along the path of the satellite. The data from these is fed into numerical forecasting models, helping with the analysis of the state of the atmosphere and hence with the weather forecast.



satellites
Fig 1: The current global satellite network.

Satellite instrumentation

Satellites carry a variety of instruments. Some of the instruments provide the images, with which most people are familiar – these are known as radiometers. Others measure the temperature and humidity vertically through the atmosphere – these are spectrometers and interferometers. Such remote sensing instruments are called passive because they measure the radiation being emitted by various parts of the atmosphere. Active remote sensing instruments are also used. These emit radiation from a transmitting device, such as radar, towards either the earth’s surface or objects in the atmosphere, like clouds or falling rain, which reflect the radiation. The target attenuates the radiation pulse, making the reflected radiation different from the outgoing, and this difference can be measured. Such measurements are then used to assess surface wind speed, rates of rainfall and other useful parameters.

The information from spectrometers and interferometers is not available, even to weather forecasters. It is only used by numerical weather prediction models. However, the images that are created from the radiometers’ data are of immense value in both analysing and forecasting the weather, and many of them are readily available to anyone with the appropriate equipment.

Types of satellite images

Satellite images are available from a number of different channels which are used individually or in combination to reveal information about the atmosphere and surface. Two of these channels are commonly referred to as Visible and Infra-red.

Visible images

Fig 2: Example of a visible image © Copyright EUMETSAT/Met Office

One type of radiometer measures visible light and provides visible images (just like a camera taking black and white photographs). What is being viewed is sunlight that has been reflected from the Earth or clouds. In general, the brighter the cloud appears, the thicker it is. The only disadvantage of visible images, as their name suggests, is that they are only available during daylight.

Infrared images

an example of an infrared image
Fig 3: An example of an infrared image © Copyright EUMETSAT/Met Office

These are effectively measuring the temperature of the top of the cloud or, if no cloud is present, of the Earth’s surface. The images are usually prepared in such a way that cold surfaces appear white and warm ones darker.

Because of the adiabatic lapse rate, temperatures in the lower part of the atmosphere normally decrease with height, so high cloud (with low temperatures) appears white, with low cloud or the Earth’s surface appearing darker.

Unlike visible images, infrared images are available even when there is no daylight.

A combination of visible and infrared images is very useful and can help distinguish between high and low cloud. For example, if a bright area appears on both the infrared and visible images in the same place, it is likely to be thick, high cloud. However, if the area appears bright on the visible image but dark on the infrared one, it is probably low cloud or perhaps fog. On the other hand, high-level cirrus cloud is readily detected on an infrared image but, unless quite thick, is barely detectable on a visible image.

Using satellite images

Satellite images provide a ‘real-time’ view of weather systems and are available from many web sites, including Dundee University. Many schools and colleges also have systems that provide access to live weather satellite images and allow a time-lapse sequence of images to be displayed showing how weather systems develop over time.

View satellite images from the Met Office

(i) Analysing cloud patterns

In general, the clouds shown in satellite pictures can be classified as layer clouds or convective clouds. Layer clouds tend to cover large areas and are indicated on a satellite picture by an area of uniform brightness. This type of cloud is formed by either widespread condensation at low levels, often under an inversion, or by large-scale rising motion in the atmosphere, often associated with depressions or fronts. Convective clouds are usually formed by air being heated from below. Rising bubbles of air generate cloud while the surrounding descending air is cloud free. The individual clouds can be identified on a satellite picture, and it is sometimes possible to look at the build-up of thunderstorm cells.

Fig 4a: Example of layer cloud on an infrared image
Fig 4a: Example of layer cloud on an infrared image
Example of layer cloud on a visible image
Fig 4b: Example of layer cloud on a visible image
Fig 4c: Example of convective cloud on an infrared image
Fig 4c: Example of convective cloud on an infrared image
Fig 4d: Example of convective cloud on a visible image
Fig 4d: Example of convective cloud on a visible image

(ii) Identifying the location of depressions (low pressure)

Satellite pictures are particularly helpful in locating depressions and fronts. Depressions can be picked out by their distinctive swirl of cloud, and frontal systems can often be seen as a wishbone-shaped area of cloud radiating from a depression. A cold front is often clearly shown as a distinctive trailing edge of the left-hand prong of the wishbone pattern.

Example of a depression on a infrared image
Fig 5: Example of a depression on a infrared image © Copyright EUMETSAT/Met Office

(iii) Inferring the location of anticyclones (high pressure)

In anticyclones, the air is descending and warming – this means that thick cloud will not form, so areas of high pressure, especially blocking anticyclones, can easily be identified by the absence of high-level cloud and the ground and coastline can often be seen on the image.

Example of a cloud free anticyclone on a visible image
Fig 6: Example of a cloud free anticyclone on a visible image © Copyright EUMETSAT/Met Office

(iv) Estimating wind speeds and the movement of frontal systems

It is possible to estimate wind speed from the movement of clouds in a succession of images from geostationary satellites. A small section of cloud is identified and tracked through several images. Infrared images are used, since the temperature of the cloud top can be used to assess its height. Errors occur due to changes in the height of the cloud top as it grows or decays and mislocation of the area due to changes in size and shape. The movement of fronts is tracked by the movement of the cloud mass associated with the front.

 

Fig 7: Example showing the movement of frontal systems on an infrared image © Copyright EUMETSAT/Met Office

It should be remembered that fronts move at different speeds along their length and the surface front may well not move at the same speed as the higher-level cloud seen in the image.


The speed of the surface wind can be measured using an instrument known as Synthetic Aperture Radar (SAR). This can measure the speed of individual wavelets on the sea surface, from which the surface wind is inferred. The measurement is not possible when cloud is present.

(v) Studying global pressure belts

Whole Earth images allow the location of high and low pressure belts to be identified on the global scale. By looking at images from different times of the year, it is possible to see how these belts shift. If images are available from over the Indian Ocean, it is possible to watch the build-up of the Indian Monsoon.

Fig 8: A global infrared image © Copyright EUMETSAT/Met Office
Fig 8: A global infrared image © Copyright EUMETSAT/Met Office

(vi) Analysing daily temperature changes

A series of daily images can help show diurnal temperature variations as well the contrasts between land and sea temperatures.

Fig 9: Infrared image 11 May 2005 0000 GMT

(vii) Tracking the movement of tropical storms

Fig 11: Infrared image of Hurricane Rita 23 September 2005 © Copyright NOAA
Fig 11: Infrared image of Hurricane Rita 23 September 2005

Satellite images can be easily used to identify tropical storms by spotting the characteristics swirls of cloud surrounding the clear central eye of the storm. The size of the hurricane can be measured, along with the speed and direction of movement.

Future satellite programmes and research

Satellites and their instruments require a significant level of investment in order to be designed and built, while their launch has a higher risk of failure than installing other observational platforms. Operational costs are also high, but as these notes show, the benefits of satellite technology images are huge, providing large quantities of usable and relevant data on a global scale.

With each new generation of satellites, a new opportunity is presented in using the latest instrument technology. There is now a new generation of Meteosat satellites, known as Meteosat Second Generation (MSG). The first of these was MSG-1, and this was launched in 2002.

A second and third (MSG-2: Meteosat-9, MSG-3: Meteosat-10) have now been in use for some years, with MSG-3 being the operational European geostationary satellite at the moment. Its radiometers can provide images with a similar resolution to those on polar orbiting satellites. There are additional instruments to measure the Earth’s radiation budget, which will be essential for climate studies, and to provide Search and Rescue (SAR) communications.

MSG-4: Meteosat-11 is due to be launched in 2015.

Satellite acronyms

EUMETSAT – this is the European organisation that designs, builds and launches satellites, and the United Kingdom is represented by the Met Office.

MSG – Meteosat Second Generation

GOES – Geostationary Operational Environment Satellite

INSAT – Indian National Satellite

NOAA – National Oceanic and Atmospheric Administration (US Department of Commerce)

 

Satellites lesson plan

 

Web page reproduced with the kind permission of the Met Office

Water Cycle

What are clouds and why does it rain?

 

Prior Learning

Previously students learnt the basic water cycle, this is adding to and building upon this work.

Objectives

By the end of the lesson:

All students will know that water moves within the hydrological cycle

Most students will know that key vocabulary for the hydrological cycle

Lesson plan

Starter

Get the students to complete the hydrological cycle word search to give them the key vocabulary for the lesson.

Lesson resources

Hydrological cycle word search.

Main Body

Option to demonstrate water cycle in a bowl

clouds watercycle expriment
Illustration of water cycle in a bowl

A quick visual refresh of what is going on. Simple demonstration requiring a kettle (to supply steaming water) a mixing bowl, cling film and some ice cubes.

Condensation should form on the cling film and drip (rain) back into the bowl. A slower version of this demo can be found in the Primary resources.

Go through hydrological cycle animation with students.

You will need:
Clear glass bowl
Kettle for steaming water
Ice cubes
Clingfilm

Hydrological cycle worksheet.

Hydrological cycle worksheet answers.

Plenary

Complete the hydrological cycle crossword to check their understanding of the cycle. Alternatively compile their own crossword using key words.

Hydrological cycle crossword.

Web page reproduced with the kind permission of the Met Office