In Depth – Understanding Weather

Understanding weather

Air masses

Atmosphere

Clouds

El Niño and La Niña

High pressure or anticyclone

Low pressure or depression

Temperature differences

Weather fronts

Weather systems

Wind

Air masses

Air masses are parcels of air that bring distinctive weather features to the country. An air mass is a body or ‘mass’ of air in which changes in temperature and humidity within them are relatively slight. That is to say the air making up the mass is very uniform. in temperature and humidity.

An air mass is separated from an adjacent body of air by a weather front. An air mass may cover several millions of square kilometres and extend vertically throughout the troposphere.

Atmosphere

A thin layer of mixed gases which covers the Earth and helps it from becoming too hot or too cold. Its circulation, the heat (terrestrial radiation) and light (solar radiation) which pass through it, and the processes which go on in it, all affect the climate. The atmosphere is about 800 km (500 miles) deep and is made up of 21% oxygen, 78% nitrogen, 0.037% carbon dioxide, and other gases including hydrogen, helium, neon, argon, krypton, xenon, and water vapour.

Clouds

A classification of clouds was introduced by Luke Howard (1772-1864) who used Latin words to describe their characteristics.

  • Cirrus – a tuft or filament (e.g. of hair)
  • Cumulus – a heap or pile
  • Stratus – a layer
  • Nimbus – rain bearing

There are now ten basic cloud types with names based on combinations of these words (the word ‘alto’, meaning high but now used to denote medium-level cloud, is also used).

Clouds form when moist air is cooled to such an extent it becomes saturated. The main mechanism for cooling air is to force it to rise. As air rises it expands – because the pressure decreases with height in the atmosphere – and this causes it to cool. Eventually it may become saturated and the water vapour then condenses into tiny water droplets, similar in size to those found in fog, and forms cloud. If the temperature falls below about minus 20 °C, many of the cloud droplets will have frozen so that the cloud is mainly composed of ice crystals.

The ten main types of cloud can be separated into three broad categories according to the height of their base above the ground: high clouds, medium clouds and low clouds.

High clouds are usually composed solely of ice crystals and have a base between 18,000 and 45,000 feet (5,500 and 14,000 metres).

  • Cirrus – white filaments
  • Cirrocumulus – small rippled elements
  • Cirrostratus – transparent sheet, often with a halo

Medium clouds are usually composed of water droplets or a mixture of water droplets and ice crystals, and have a base between 6,500 and 18,000 feet (2,000 and 5,500 metres).

  • Altocumulus – layered, rippled elements, generally white with some shading
  • Altostratus – thin layer, grey, allows sun to appear as if through ground glass
  • Nimbostratus – thick layer, low base, dark. Rain or snow falling from it may sometimes be heavy

Low clouds are usually composed of water droplets — though cumulonimbus clouds include ice crystals – and have a base below 6,500 feet (2,000 metres).

  • Stratocumulus – layered, series of rounded rolls, generally white with some shading
  • Stratus – layered, uniform base, grey
  • Cumulus – individual cells, vertical rolls or towers, flat base
  • Cumulonimbus – large cauliflower-shaped towers, often ‘anvil tops’, sometimes giving thunderstorms or showers of rain or snow

blue sky with clouds

 

El Niño and La Niña

The tropical Pacific Ocean has a warming and cooling cycle. This cycle is a completely natural event and usually lasts between three to seven years. When the waters become warmer it is called El Niño, and when they become cooler it is called La Niña. During the cycle, the temperature of the ocean can change by around 3 °C between the warmest and coolest times.

Fishermen off the South American coast have known about this natural event for hundreds of years. When it happens, they see a huge fall in the numbers of fish caught. But scientists are only just beginning to understand how the event affects Earth’s weather and climate.

El Niño and La Niña

High pressure or anticyclone

In an anticyclone (also referred to as a ‘high’) the winds tend to be light and blow in a clockwise direction. Also the air is descending, which inhibits the formation of cloud. The light winds and clear skies can lead to overnight fog or frost. If an anticyclone persists over northern Europe in winter, then much of the British Isles can be affected by very cold east winds from Siberia. However, in summer an anticyclone in the vicinity of the British Isles often brings fine, warm weather.

Low pressure or depression

In a depression (also referred to as a ‘low’), air is rising. As it rises and cools, water vapour condenses to form clouds and perhaps precipitation. Consequently, the weather in a depression is often cloudy, wet and windy (with winds blowing in an anticlockwise direction around the depression). There are usually frontal systems associated with depressions.

Temperature differences

Temperature affects other weather elements including air pressure, cloud formation, humidity and precipitation.

Factors affecting temperature:

  • Latitude – warmer closer to the equator and cooler moving away towards the poles
  • Altitude – getting colder as the land gets higher
  • Distance from the sea – temperatures inland are higher than the coast during the summer and lower than the coast during winter. This is because land heats up and cools down more quickly than the sea
  • North-facing slopes in the southern hemisphere and south-facing slopes in the northern hemisphere receive more sunlight than the opposite slopes and are warmer
  • Wind – generally makes the air feel cooler

Weather fronts

A weather front is simply the boundary between two air masses.

There are three different types of weather front. These are:

  1. Cold front
  2. Warm front
  3. Occluded front (also called an occlusion)

Cold front

This is the boundary between warm air and cold air and is indicative of cold air replacing warm air at a point on the Earth’s surface

On a synoptic chart a cold front appears blue

cold front symbol

 

The presence of a cold front means cold air is advancing and pushing underneath warmer air. This is because the cold air is ‘heavier’ or denser, than the warmer air. Cold air is thus replacing warm air at the surface. The symbols on the front indicate the direction the front is moving.

The passage of a cold front is normally marked at the earth’s surface by a rise of pressure, a fall of temperature and dew-point, and a veer of wind (in the northern hemisphere). Rain occurs in association with most cold fronts and may extend some 100 to 200 km ahead of or behind the front. Some cold fronts give only a shower at the front, while others give no precipitation. Thunder may occur at a cold front.

Warm front

This is the boundary between cold air and warm air and is indicative of warm air replacing cold air at a point on the Earth’s surface

On a synoptic chart a warm front appears red

warm front symbol

 

The presence of a warm front means warm air is advancing and rising up over cold air. This is because the warm air is ‘lighter’ or less dense, than the colder air. Warm air is thus replacing cold air at the surface. The symbols on the front indicate the direction the front is moving.

As a warm front approaches, temperature and dew-point within the cold air gradually rise and pressure falls at an increasing rate. Precipitation usually occurs within a wide belt some 400 km in advance of the front. Passage of the front is usually marked by a steadying of the barometer, a jump in temperature and dew-point, a veer of wind (in the northern hemisphere), and a cessation or near cessation of precipitation.

Occluded front

These are more complex than cold or warm fronts. An occlusion is formed when a cold front catches up with a warm front

When a cold front catches up with a warm front the warm air in the warm sector is forced up from the surface

On a synoptic chart an occluded front appears purple

occluded front symbol

 

Weather systems

Weather can change on a daily basis especially at middle to high latitudes where it is controlled by weather systems, depressions and anticyclones.
On a weather chart, lines joining places with equal sea-level pressures are called isobars. Charts showing isobars are useful because they identify features such as anticyclones (areas of high pressure), depressions (areas of low pressure), troughs and ridges which are associated with particular kinds of weather.

Wind

windsock

The movement of air around the earth from high pressure to low pressure is what brings about winds. The direction given for the wind refers to the direction from which it comes. For example, a westerly wind is blowing from the west towards the east.

Measurements of wind strength are made at 10 metres (33 feet) above the ground. A specified height has to be used because the wind speed decreases towards the ground. In this country winds are measured in knots (nautical miles per hour). However, forecast winds are often given in miles per hour (where 1 knot is equivalent to 1.15 mph) or in terms of the Beaufort Scale.

There are rapid variations in the wind – these are referred to as gusts. Gusts are higher inland than over the sea or windward coasts, although the mean wind speeds tend to be lower inland. Typically, gusts can be 60% higher than the mean speed, although in the middle of cities this can reach 100%. Northerly winds tend to be gustier than southerly ones. In general, the weather is strongly influenced by the wind direction, so information about the wind provides an indication of the type of weather likely to be experienced.

  • Northerly winds tend to bring relatively cold air from polar regions to the British Isles. Similarly, southerly winds tend to bring relatively warm air from the tropics
  • As cold polar air moves southwards over an increasingly warm sea, the heating of the air by the sea causes cumulus clouds to form. These clouds may grow sufficiently for showers to develop and, consequently, winds from the north-west, north or north-east usually bring cold, showery weather to the British Isles
  • Warm air from the tropics moving northwards over the sea is cooled from below. Sometimes the cooling is sufficient for sea fog or a thin layer of stratus to form. The cloud can become thick enough for drizzle, especially on windward coasts and over high ground. In general, winds from the west or south-west are associated with overcast, wet weather
  • Winds from the south and south-east mainly occur in summer and these bring warm, dry weather. However, southerly winds can sometimes bring hot, thundery weather
  • Easterly winds in winter bring very cold air to the British Isles. The characteristics and path of the air determine whether it is cloudy (with perhaps rain, sleet or snow) or fine and sunny. In summer, an easterly wind will mean it is cool on the east coast but warm elsewhere, usually with clear skies

windsock

Web page reproduced with the kind permission of the Met Office

Anticyclones, Depressions and Fronts

LESSON PLAN: Introduction to Anticyclones, Depressions and Fronts
Key Stage 4 – GCSE
Subject Geography


 

Length 1 lesson

Teaching Objectives/Learning Outcomes
By the end of the lesson, pupils will know and understand:
Characteristics of depressions and fronts and the sequence of associated weather
Characteristics of anticyclones and the contrast between those in summer and in winter.

Resources Required
None.

Prior Knowledge Required
A basic knowledge of weather and climate

Teaching Activities
The following web pages have related resources at a similar level:

Weather Systems

Student Charts

Weather Systems

Exercises
4 worksheets with exercises are provided to consolidate learning.
A series of extension exercises are provided for more able students, or those who have already studied the topics covered in more detail prior to this lesson.

Plenary – A quiz is available, which brings together all the topics covered. The can be used to examine whether the objectives of the lessons have been met.

Suggestions for Home Work
Any of the worksheet activities can be completed as homework.

PART A – ANTICYCLONES AND DEPRESSIONS

High Pressure Systems

A high pressure system, also known as an anticyclone occurs when the weather is dominated by stable conditions. Under an anticyclone air is descending, forming an area of higher pressure at the surface. Because of these stable conditions, cloud formation is inhibited, so the weather is usually settled with only small amounts of cloud cover. In the Northern Hemisphere winds blow in a clockwise direction around an anticyclone. As isobars are normally widely spaced around an anticyclone, winds are often quite light.
Anticyclones can be identified on weather charts as an often large area of widely spaced isobars, where pressure is higher than surrounding areas.

Winter Anticyclones

In winter the clear, settled conditions and light winds associated with anticyclones can lead to frost and fog. The clear skies allow heat to be lost from the surface of the earth by radiation, allowing temperatures to fall steadily overnight, leading to air or ground frosts. Light winds along with falling temperatures can encourage fog to form; this can linger well into the following morning and be slow to clear. If high pressure becomes established over Northern Europe during winter this can bring a spell of cold easterly winds to the UK.

Summer Anticyclones

In summer the clear settled conditions associated with anticyclones can bring long sunny days and warm temperatures. The weather is normally dry, although occasionally, very hot temperatures can trigger thunderstorms. An anticyclone situated over the UK or near continent usually brings warm, fine weather.

Low Pressure Systems

A low pressure system, also known as a depression occurs when the weather is dominated by unstable conditions. Under a depression air is rising, forming an area of low pressure at the surface. This rising air cools and condenses and helps encourage cloud formation, so the weather is often cloudy and wet. In the Northern Hemisphere winds blow in anticlockwise direction around a depression. Isobars are normally closely spaced around a depressions leading to strong winds.
Depressions can be identified on weather charts as an area of closely spaced isobars, often in a roughly circular shape, where pressure is lower than surrounding areas. They are often accompanied by fronts.

What to do next
Using this information on pressure systems you should now be able to complete worksheet 1. Then you can move on to extension exercise 1 or worksheet 2

  • PART B – FRONTS

A front is a boundary between two different types of air masses, these are normally warm moist air masses from the tropics and cooler drier air masses from polar regions. Fronts move with the wind so over the UK they normally move from west to east. The notes below provide information about the most common types of fronts. The descriptions given apply to active well developed fronts, weaker fronts may not display all the characteristics or they may be less well defined.

Warm Fronts

A warm front indicates that warm air is advancing and rising up over the colder air. This is because the warm air is ‘lighter’ or less dense, than the cold air. Therefore warm fronts occur where warmer air is replacing cooler air at the surface. As the warm front approaches there is a gradual deterioration in the weather. Clouds gradually lower from higher cirrus, through altostratus, to stratus and nimbostratus at the front. There is often a prolonged spell of rainfall which is often heavy. Behind the warm front the rain becomes lighter, turns to drizzle or ceases, but it remains cloudy.

Temperatures rise behind the warm front and winds turn clockwise, also known as a wind ‘veer’. Pressure falls steadily ahead of and during the passage of the warm front, but then rises slowly after its passage.

The following diagram shows the formation of a warm front in diagrammatic form.

PART B – FRONTS A front is a boundary between two different types of air masses, these are normally warm moist air masses from the tropics and cooler drier air masses from polar regions. Fronts move with the wind so over the UK they normally move from west to east. The notes below provide information about the most common types of fronts. The descriptions given apply to active well developed fronts, weaker fronts may not display all the characteristics or they may be less well defined. Warm Fronts A warm front indicates that warm air is advancing and rising up over the colder air. This is because the warm air is ‘lighter’ or less dense, than the cold air. Therefore warm fronts occur where warmer air is replacing cooler air at the surface. As the warm front approaches there is a gradual deterioration in the weather. Clouds gradually lower from higher cirrus, through altostratus, to stratus and nimbostratus at the front. There is often a prolonged spell of rainfall which is often heavy. Behind the warm front the rain becomes lighter, turns to drizzle or ceases, but it remains cloudy. Temperatures rise behind the warm front and winds turn clockwise, also known as a wind ‘veer’. Pressure falls steadily ahead of and during the passage of the warm front, but then rises slowly after its passage. The following diagram shows the formation of a warm front in diagrammatic form.

The following diagram shows a cross section through a warm front, with associated cloud, temperature and weather changes.

anticyclones_depressions_fronts

 

 

 

 

 

 

 

 

Cold Fronts

A cold front indicates that cold air is advancing and pushing underneath warmer air at the surface. This occurs because the cold air is ‘heavier’ or denser than the warm air. Therefore cold fronts occur where cooler air is replacing warmer air at the surface. The passage of weather associated with a cold front is much shorter lived than that with a warm front. As there is often a lot of cloud in the warmer air ahead of the cold front, there is often little indication of the approaching cold front. As the front passes temperatures fall and there is often a short spell of very heavy rain, sometimes with inbedded thunderstorms and cumulonimbus clouds. Behind the front the weather is much brighter with broken clouds but occasional showers. Winds veer with the passage of the cold front and are often strong and gusty, especially near showers. Pressure rises throughout the approach and passage of the cold front.

The following diagram shows the formation of a cold front in diagrammatic form.

anticyclones_depressions_fronts_3

 

 

 

 

 

 

 

 

 

 

 

The following diagram shows a cross section through a cold front, with associated cloud, temperature and weather changes.

anticyclones depressions fronts

 

 

 

 

 

 

Occlusions

In a mature depression the warm front normally precedes the cold front. Cold fronts generally travel much quicker than warm fronts, and eventually it will catch up with the warm front. Where the two fronts meet, warm air is lifted from the surface and an occlusion is formed. An occlusion can be thought of as having similar characteristics to both warm and cold fronts. The weather ahead of an occlusion is similar to that ahead of a warm front, whilst the weather behind is similar to that behind a cold front.

The following diagrams depict the formation of an occlusion

anticyclones_depressions_fronts_5

anticyclones_depressions_fronts_6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What to do next
You can now move on to Part C – Life Cycle of a Depression.

 

PART C – LIFE CYCLE OF A DEPRESSION

A Norwegian scientist called Vilhelm Bjerknes devised a simple model which described how depressions developed from the meeting of warm and cold air. The model had four stages which are detailed below.

Origin and Infancy

Initially a warm air mass such as one from the tropics, meets a cooler air mass, such as one from the polar regions. Depressions which affect the UK normally originate over the Atlantic Ocean.

anticyclones depressions

Maturity

The warm air rises up over the colder air which is sinking. A warm sector develops between the warm and cold fronts. The mature stage of a depression often occurs over the UK.

anticyclones depressions fronts

Occlusion

The cold front travels at around 40 to 50 miles per hour, compared to the warm front which travels at only 20 to 30 miles per hour. Therefore the cold front eventually catches up with the warm front. When this occurs an occlusion is formed.

anticyclones depressions fronts

Death

Eventually the frontal system dies as all the warm air has been pushed up from the surface and all that remains is cold air. The occlusion dies out as temperatures are similar on both sides. This stage normally occurs over Europe or Scandinavia.

What to do next
You can now move on to Part D – Depression cross-section and weather sequence

PART D – DEPRESSION CROSS SECTION AND WEATHER SEQUENCE

 

Cross-section through a Classic Depression

Most depressions have a warm and cold front, more mature depressions may also have an occluded front. The diagram below shows a cross-section through a depression, showing the warm and cold fronts and an indication of the associated weather.

anticyclones_depressions

table

What to do next

Using this information on the passage of depressions you should now be able to complete worksheet 3 and worksheet 4.

 

Web page reproduced with the kind permission of the Met Office

BACK TO TOP