Weather and Climate worksheet

Background Information:

Climate is the average weather over a long time period (30 years) for a particular region or place. The climate affects a number of environmental factors within the region including the type and growth of vegetation and wildlife. The climate is determined by large scale factors such as the Earth’s orbit around the Sun, the position of the continents and the composition of the atmosphere. Weather describes the short-term state of our atmosphere. This may include information about the air temperature, precipitation, air pressure and cloud cover. Our local weather changes daily due to the movement of air in our atmosphere.

Experiences and Outcomes:

I can investigate the relationship between climate and weather.

two dice tally

Difference between weather and climate

You will need:

2 dice

Tally chart for numbers 2-12 Graph paper

Method:

In pairs, throw the two dice about 100 times and record the combined score shown each time. 

Draw a bar graph of the results.

Results:

The results should show a smoothish distribution, with a score of 7 being most frequent. Ask each group to predict what their score will be if they throw the dice one more time – they can’t. However, with one more throw, the mean of all the scores will stay about the same (about 7). In the same way, the weather may be very different from day to day but the climate, the weather we ‘expect’, stays about the same.

If you don’t have access to dice, you can do this activity online at https://www.metlink.org/blog/weather-climate-extreme-weather-and-chaos-theory/ 

Extension:

Can the students design a concept cartoon to illustrate the difference between weather and climate? See https://www.stem.org.uk/system/files/elibrary-resources/legacy_files_migrated/1292WEATHER.PDF and http://www.millgatehouse.co.uk/concept-cartoons-research/ 

References/Resources: 

A YouTube video showing an owner and his dog, as an analogy for weather and climate

Beast from the East

Broad General Education (BGE)

Second Level: People, Place and the Environment

I can describe the physical processes of a natural disaster (extreme weather event)
and discuss its impact on people and the landscape
.

  • Describes the causes of a natural disaster such as a volcano, earthquake or extreme weather event.
  • Describes the impact of the natural disaster giving at least three examples for people and one for the landscape. Impact can be positive or negative.

Using Weather Data to Record and Interpret the Weather

Using weather data to record, interpret and predict the weather (Part 1)

Learning objectives:

  • To be able to use secondary sources of information, including aerial photographs [for example the internet]
  • To be able to analyze evidence and draw conclusions
  • To be able to recognize and explain patterns made by the data leading to basic predictions

Resources:
•  http://wow.metoffice.gov.uk/home

Outline of lesson:
1. Ask the class to work in pairs or threes to develop geographical adjectives for the weather in the past few days e.g. cold, freezing, foggy, and humid.

2. Brainstorm using snowball techniques the basic elements of the weather. This should include: precipitation (including snow, rain, hail and sleet), temperature, wind speed and direction and humidity. Clearly guidance will be needed and pupils are not expected to use the correct terms.

3. Ask the class to work in pairs and write or develop a one sentence statement describing the current weather.

4. Capture some of the sentences and write up so they can be seen.

5. Review with the class and identify what is lacking from the statements – for example numbers rather than words – degrees Celsius, mm of rain.

6. So if we are to give a good description of the weather we need to be able to quantify how hot or cold it is, how much it has rained, etc..

7. Use the web link http://wow.metoffice.gov.uk/home to go to the data home page. Use the filters to select ‘WOW sites’ and ‘official observations’.

Zoom in to find the data source nearest the school, click on it and then select ‘view full observation’ and then ‘table’.
You can then edit the start and finish dates to select the last month.
Pupils will then be able to choose which data sets they want to research. We would suggest ‘air temperature’ and ‘rainfall accumulation’ over the last month.
If the data is incomplete for that weather station, you will have to find another one which is close to the school.

8. Challenge the pupils to identify how they will sort the data into less information so they could accurately plot the information on a graph. They will need to reduce the time interval or time frame, design a secondary recording table and then import the data needed. It will be important that they collect sufficient headings to make a graph meaningful. This could be completed
using Excel, or as a table on a piece of paper.

9. By the end of the lesson each group should have created tables of data illustrating the weather over the past month.

10. Develop a set of age appropriate maths questions including all 4 number operations using the data. For example, questions might include ‘how much has it rained in the last week’, or ‘what is the difference between the temperature now and the temperature this time yesterday’.

Lesson title: Using weather data to record and interpret the weather.(Part 2)

Learning objectives:

  • To be able to use secondary sources of information, including aerial photographs [for example the internet]
  • To be able to analyse evidence and draw conclusions
  • To be able to recognise and explain patterns made by the data leading to basic predictions

Resources:
1. Graph paper or Excel
2. Data from last lesson
3.Film https://youtu.be/fdErsR8_NaU 

Outline of lesson:
1. Recap on the previous lesson by looking at the terms and the data collection exercise.

2. Use the video clip at https://youtu.be/fdErsR8_NaU to illustrate how important weather forecasts are and how they are made.

3. Explain that the challenge today is to develop a way of presenting the information in a way that you can ‘interpret’ and draw some idea about the connections in the weather.

4. Re-cap the key points about how graphs should be presented

5. Support the students in developing good quality graphs including Title, labelled axis with units and clearly plotted bars or lines as needed.

6. Once complete get the pupils to write a one sentence interpretation of each graph e.g. ‘over the last month the maximum temperature fell’ or ‘it is colder at night than during the day’, depending on which data they chose to represent.

7. From this statement the students could try and develop further statements using the weather station data from http://wow.metoffice.gov.uk/home. They should begin to hypothesise around what connections they may find for example, when it’s getting colder in one place, does it get colder in another place? Is it generally windier when its wetter? Does the maximum
temperature change as you’d expect with the seasons?.

Note: ongoing work can be undertaken producing monthly weather reports for the school from a local weather station. This could be developed for Gifted &Talented groups into basic forecasting e.g. can you see whether there is a link between pressure and rainfall.

Climate Change Graph

 

You will need: 120 multicoloured lollipop sticks (at least 10 sticks each of 6 colours), PowerPoint, lollipop.xls, blue tack or similar

  1. Beforehand, mark on the middle of each lollipop stick. On each stick, write the year and the temperature for one of the data points in the spreadsheet (e.g. 1970 14.47), differentiating between global and CET data. Use a different coloured lollipop for each decade – so the 60s are all one colour etc.
  2. You’ll also need to print a blank graph – the spreadsheet supplied will work on A3 paper.
  3. Divide the students into two groups. Within each group, divide out the lollipop sticks.
  4. They should then work together to stick the sticks to the graphs in the right places.
  5. When they’ve finished, ask them to complete the table on the ppt.
  6. What does their graph show? What surprises them? What are the similarities and differences between the graphs?
  7. Next, they should take the sticks back off the graph and, within their groups, line the sticks up in temperature order with the coldest on the left and the warmest on the right.
  8. What does this show?

Transition Resources for Year 6/ Post SATS

Transition Resources for Year 6/Post SATS

These resources are designed to be used in one session with year 6 (10/ 11 year old) students. Although they will support numeracy, literacy and various other aspects of the curriculum, they are designed to prepare students for secondary school rather than support the year 6 curriculum.

There are 6 suggested activities. Although they are designed to be run sequentially, you may choose to use only some of the activities, or to supplement them with your own ideas.
It should be possible to use these activities with any class size.

Many people, including Ellie Highwood, Cristina Charlton-Perez, Helen Johnson and Laila Gohar, have contributed to these resources.

Guidance Notes – START HERE!

Activity 1 – the Difference between Weather and Climate

Powerpoint: Weather-or-Climate

Word Doc: Weather-or-Climate

Activity 2 – Climate Change Graphs

Powerpoint: Climate Change Picture

Excel: Lollipop

Activity 3 – Climate Change Lucky Dip

No resources required

Activity 4 – Weather Risk Game

Powerpoint: Weather Risk Game

Word Document: Money

Activity 5 – Flooding/ Floating Gardens

Powerpoint: Floating Garden Challenge

Activity 6 – Greenhouse Bulldog

No resources required

Does it Always Rain from Dark Clouds?

Severe Storms

Including hail, downdraughts and cloudbursts

hailstructureIt was reported in The Times newspaper on 15 April 1986 that a hailstorm lashing Dhaka, the capital of Bangladesh, had killed nearly 50 people and injured more than 400. The storm had brought winds of about 60 mph and hailstones weighing up to 2 lb (nearly 1 kg). Houses had been flattened, communications disrupted and the windscreens of more than 700 cars shattered. In such conditions, an umbrella was no use whatsoever; even a riot shield may not have provided adequate protection! According to Dick File, in Weather Facts (Oxford University Press, 1991), this storm (which struck on 14 April 1986) killed 92 people and produced hailstones that weighed 1.02 kg.

The heaviest hailstones to fall on the United Kingdom did so at Horsham, West Sussex, on 5 September 1958 and weighed 140 g. They were almost the size of a tennis ball. When they hit the ground, they were travelling at speeds in excess of 100 mph (50 m/s). If you find this surprising, do a little calculation, using the formula:
V2 = u2 + 2as where u is the initial speed, v the terminal speed, a the acceleration (in this case, due to gravity) and s the distance travelled. For a hailstone falling from a height of 500 m through still air, v = 100 m/s! The impact of a missile the size of a tennis ball travelling this fast is much more serious than that of a cricket ball hit for six.

Should you ever get the chance, collect some large hailstones and cut them in half. You may find a layered structure, with alternate layers of clear and opaque ice (as in the picture on the right, which shows a section of a hailstone viewed by transmitted light). The layers are acquired in different parts of the storm clouds. As hailstones fall, they collect tiny water droplets, which flow around them and freeze. If no air is trapped, the ice is clear.

The storm which struck the Wokingham area of Berkshire on 9 July 1959 produced hailstones more than 2.5 cm in diameter. This storm was studied in detail by Professor Frank Ludlam of Imperial College and his team of co-workers, who produced a striking three-dimensional model of the airflow with-in the storm and explained how large multi-layered hailstones may form in such weather systems.

diagram of severe storm 3
This three-dimensional model is taken from a paper entitled Airflow in convective storms by K.A.Browning and F.H.Ludlam published in the April 1962 issue of the Quarterly Journal of the Royal Meteorological Society (Volume 88, pp.117-135).

In the diagram on the right, streamlines of air in which condensation occurred are shaded. The surface areas affected by rain and hail are shown by, respectively, grey and black shading. Heights are shown in thousands of feet. Precipitation formed in air which entered the storm near position H. As shown, the precipitation was carried across relative to the storm to around 13-15,000 feet, whereupon it fell and re-entered the strong updraught near posit-ion O. Some precipitation particles reached altitu-des of 30,000 feet or more and grew into large hail-stones before falling again, forward of the strong updraught, near position H’. The storm moved from left to right, with rain on its left flank and a squally ‘gust front’ (shown as a cold front) on its right flank. Behind the storm, chilled air reached the ground.

severe storm diagram

The diagram on the right shows a vertical section through a typical severe hailstorm (moving from right to left) and is also taken from Ludlam’s 1961 article in Weather. Compare this diagram with the three-dimensional model above

The paths of the air are drawn as if the storm was stationary. They are, therefore, relative streamlines. The dashed lines are trajectories of small hailstones. The thick full line shows the trajectory of a large hailstone.

To some extent, the features shown on this vertical section occur also in vigorous cumulo-nimbus systems which do not produce large hail. Students can look out for mamma, the udder-like cloud feature that hangs under the anvil and other parts of the cloud. How are mamma formed? Students can also observe gust fronts and measure the temperature drop that occurs when a storm passes. It is often several degrees Celsius. Perhaps, with the help of someone who has a car, they can map areas of rain and hail relative to moving storms.

severe storm diagram 2
This diagram has been taken from The microburst hazard to aircraft by J.McCarthy and R.J.Serafin, published in Weatherwise in 1984 (Volume 37, pp.120-127)

In severe storms, downdraughts may be as strong as 30-40 m/s and reach the ground as ‘down-bursts’. These are dangerous, as the diagram above shows. Downbursts spread out near the ground. An aeroplane that flies into such an outflow first encounters an increasing head-wind (at 1 and 2), which adds to the speed of the speed of the air flowing over the aircraft’s wings and thus increases lift. At 3, however, the strength of the downdraught begins to reduce the altitude of the aircraft; and at 4 and 5 the aircraft experiences both a tail-wind (which reduces air speed and lift) and a downward force from the downdraught. Over the years, there have been many air disasters caused this way, especially in North America.

Cloudbursts

On 15 August 1952, the village of Lynmouth in North Devon was devastated by a torrent of water which poured off Exmoor; 34 people died. On 29 May 1920, in and around the Lincolnshire town of Louth, 22 people died when water from a storm over the Wolds caused the River Lud, normally a small stream, to rise 5 m above its normal level. In Dorset and Somerset, there have been similar occurrences; and in all cases, severe storms caused the havoc. When such storms occur in the British Isles, the wind in the upper troposphere is typically from the south-west, with the wind in the lower troposphere from a north-easterly point (and pressure low to the south and south-west). If this flow is lifted orographically, the storm may become stationary and deposit several inches of rain in a short time. Thus, it is places below slopes that face northwards or north-eastwards that are most at risk.

Hail Prevention

To frighten away the evil spirits that caused hail, primitive tribes used to shoot arrows into storm clouds; and Christians have tried to exorcise these spirits by ringing church bells (a dangerous practice because of lightning strikes on bell towers). Not only arrows, but also cannon-balls, artillery shells and rockets have been fired into storm clouds, but all to no avail. Though there is some evidence that cloud seeding may help to reduce the size of hailstones, there is nothing we can yet do to prevent the formation of severe storms.

Climate Change Resources

Summary of Weather and Climate Links in the 2014 KS2 National Curriculum
Curriculum Links
Year 4 Scheme of Work Plants  Literacy
Year 3/ 4 Scheme of Work Climate zones
Year 5/6 Scheme of Work Climate zones Science – Light, Fossils

General Resources

 

Diamond Ranking sheet

Acknowledgements

The Climate Change Schools Resources were developed by the Climate Change Schools Project, based at the then Science Learning Centre in Durham and led by Krista McKinzey. A large number of teachers and schools in North East England were involved in their development.

They have subsequently been updated by the Royal Meteorological Society.

Recommended Weather Resources for KS2

Recommended Weather Resources for teaching 7-11 year olds

BBC What is Weather animations and lesson plans for KS2 weather.

Weather for Schools resources.

Weather resources from the Primary Magazine from the National Centre for Excellence in the Teaching of Mathematics. Requires free registration on the national STEM database.

A nice interactive map showing hot and cold extreme temperatures which introduces GIS techniques.

Seasons resource from ngfl-cymru.

A nice interactive resource for weather forecasting, focussed on Wales.

Recommended Climate Resources for KS2

Recommended Climate Resources for teaching 7-11 year olds

What’s Changing our Climate: Children’s Christmas Lecture from Imperial College London, with Professor Jo Haigh, 2017.

From the GA Investigating Climate Zones and Climate Change.

Windows to the Universe – climate.

UCAR – kids crossing.

CAFOD: zero hero campaign

BACK TO TOP