## Climate Change Concept Association Tool

This tool is best used on a laptop or other larger screen and may not function correctly on a phone.

## Scotland’s Curriculum- EVolution of vehicle sales

Resource produced in collaboration with MEI

Brief overview of session ‘logic’

• Explore the infographic – what can be worked out from this information and what questions does it raise?
• Look at trends in vehicle registrations
• Look at proportions of types of newly registered vehicles over time – why has the percentage of petrol cars being registered increased from 2015 to 2020?
• Do some calculations to show that the number of petrol cars being registered has decreased from 2015 to 2020.
• Reflect upon the implications for misleading representations of data
• Consider the implications of the ban on new petrol and diesel cars by 2035 – what affect will this ban have on the proportions of car types being registered?
• What questions does the increase in electric vehicles raise?

Mathematical opportunities offered

• Interpretation of data, statistics, graphs, infographics in context
• Critiquing graphs
• Calculating percentages
• Exploring proportions of quantities over time
• Making conjectures about future proportions given available data
• Analysing and comparing data in order to develop and present a conclusion.

## Scotland’s Curriculum Trees for Net Zero

Resource produced in collaboration with MEI

Note that this session is made up of separate activities which may be used independently.

Brief overview of session ‘logic’

• Why trees are good
• People are planting trees – estimates around what the numbers look like in terms of land use
• Some companies encourage you to offset flights by planting trees – how many trees for one flight?
• How much carbon do trees sequester?
• How does the amount of carbon sequestered by a tree change during its lifecycle?
• What happens to that carbon when a tree dies?
• Can you plant a tree to offset a flight?
• What is Net Zero?
• Can trees be used to achieve Net Zero?

Mathematical opportunities offered

• Estimation and proportional reasoning
• Developing a sense of scale of large numbers
• Converting between m2 and km2
• Interpretation of data, statistics, graphs, infographics in context
• Critiquing graphs
• Analysing and comparing data in order to develop and present a conclusion
• Making assumptions
• Making predictions

## Scotland’s Curriculum – Extreme Weather

Resource produced in collaboration with MEI

Brief overview of session ‘logic’

• Do reports of extreme cold weather provide evidence that global warming is not happening?
• Show the New York Times graphs of summer temperature distributions for the Northern Hemisphere for different periods.
• Interrogate/critique these graphs
• The distributions of temperatures are approximately Normal distributions and the mean and standard deviation both increase as the time period becomes more recent.
• Use the dynamic bell curve to calculate probabilities of different temperatures in different time periods.
• Despite the mean temperature increasing, the standard deviation also increasing means that the probability of extreme low temperatures increases.
• Normal distributions and bell curves can explain a higher frequency of extreme cold weather despite global warming.

Mathematical opportunities offered

• Interpretation of data, statistics, graphs, infographics in context
• Critiquing graphs
• Using standard form to write very large or very small numbers
• Fitting a Normal distribution or bell curve to a graph
• Exploring the effect of adjusting mean and standard deviation on a bell curve
• Understanding that probabilities can be represented and calculated using areas
• Analysing and comparing data in order to develop and present a conclusion.

## Storm Surges

Watch this short animation to learn about the causes and impacts of storm surges in the UK, as well as the expected impact of climate change on them.

At the bottom of the page, you can download a Knowledge Organiser to complement the animation.

With thanks to the students and staff at Boston College for their contribution to the animation.

## Maths for Planet Earth

Climate-based questions for students and teachers. A team of students and academics at the University of Oxford developed these Maths for Planet Earth questions.

## Fieldwork Suggestions for Independent Investigations

Some ideas, data sources and guidance for students wishing to include weather measurements in their NEA or EPQ.

Updated November 2022

#### A guide to collecting weather data

https://www.rgs.org/CMSPages/GetFile.aspx?nodeguid=59f46632-ae51-4ea7-ab94-a0c537eb3c71&lang=en-GB

#### Passage of a depression

http://wow.metoffice.gov.uk

#### Weather and Health/ Behaviour

Data source: http://wow.metoffice.gov.uk

#### Urban Climates

Using Wow data to look at urban heat islands https://www.metlink.org/resource/using-wow-to-illustrate-the-urban-heat-island-effect/

Urban winds: fieldwork guidance can be found on https://www.metlink.org/fieldwork-resource/fieldwork-in-geography/

Data source: http://wow.metoffice.gov.uk

#### Local microclimate

https://www.rgs.org/schools/teaching-resources/quick-and-easy-ideas/

Data source: http://wow.metoffice.gov.uk

#### Weather and Flooding

Data source: National River Flow Archive http://nrfa.ceh.ac.uk/ and https://environment.data.gov.uk/hydrology/index.html#/landing

#### Sea level

http://www.coolgeography.co.uk/GCSE/AQA/Coastal%20Zone/Sea%20level%20rise/Sea%20level%20rise.htm

#### Land and Sea breezes, sea breeze front

Data source: http://wow.metoffice.gov.uk

## IPCC 2021 – Extreme Heat in Urban Africa

Climate change has increased heat waves (high confidence) and drought (medium confidence) on land, and doubled the probability of marine heatwaves around most of Africa.

Heat waves on land, in lakes and in the ocean will increase considerably in magnitude and duration with increasing global warming.

Most African countries will enter unprecedented high temperature climates earlier in this century than generally wealthier, higher latitude countries, emphasising the urgency of adaptation measures in Africa.

## IPCC 2021 – Energy Security in Africa

• The focus of these resources are to explore climate change and energy security in Africa.
• Hydro electric power has been identified as a more sustainable way for Africa to achieve energy security in the future.
• Throughout the continent of Africa there are already many hydroelectric power stations, with many more planned over the coming decades.
• Climate change could potentially impact upon these plans. These resources focus upon that relationship.

## Africa: Climate Change Impact and Mitigation

Africa is one of the lowest contributors to global greenhouse gas emissions, yet key development sectors are already experiencing widespread losses and damages attributed to human-induced climate change.

Widespread negative impacts of 1.5-2°C of global warming are projected for Africa. These impacts are likely to be severe due to reduced food production, reduced economic growth, increased inequality and poverty, biodiversity loss, and increased human mortality.

Exposure to climate change in Africa is multi-dimensional. There are socioeconomic, political, and environmental factors which make people more vulnerable. Socioeconomically, Africans are disproportionately employed in climate-exposed sectors: 55-62% of the sub-Saharan workforce is employed in agriculture and 95% of cropland is rainfed. In decision-making, particularly in rural Africa, poor and female-headed households have less sway and face greater livelihood risks from climate hazards. Environmentally, in urban areas, growing informal settlements without basic services increase the vulnerability of large populations to climate hazards, especially women, children, and the elderly.

Climate adaptation across Africa is therefore crucial to lessen the impact of future warming, is generally cost-effective, and will provide social, economic, and environmental benefits to the vulnerable. However, the current finance available is far less than adaptation costs. Most adaption options are effective at present-day warming but their effectiveness for future warming is unknown.

Climate: Impact and projected risks

Most African countries will enter unprecedented high temperature climates earlier in this century than generally wealthier, higher latitude countries, emphasising the urgency of adaptation measures in Africa.

Both mean temperature and extreme temperature trends will increase across the continent, resulting in more heatwaves and drought. With above 1.5°C of global warming, drought frequency and duration will particularly increase over southern Africa. If 2°C global warming occurs there will be decreased precipitation in North Africa whilst any rise above 3°C of global warming will lead to drought duration in North Africa, the western Sahel, and southern Africa doubling from 2 to 4 months.

Bar north and southwestern Africa, rainfall events will also increase in frequency and intensity across Africa, at all levels of global warming.

Consequently, multiple African countries are facing compounding risks in the twenty-first century.

Hydrological variability and water scarcity will increase and will have a cascading impact on water supply and hydrological power production.

Climate change has already reduced economic growth across Africa, one estimate suggests gross domestic product (GDP) per capita for 1991–2010 in Africa was on average 13.6% lower than if climate change had not occurred.

Future warming will negatively affect food systems in Africa by shortening growing seasons and increasing water stress. With 1.5°C of global warming, declines are projected in suitable areas for coffee and tea in east Africa, for olives yields in north Africa, and for sorghum yields in west Africa.

Mortality and morbidity are expected to escalate as of tens of millions of Africans will be exposed to extreme weather and an increase in the range and transmission of infectious diseases.

Climate change is projected to increase migration. Africa’s rapidly growing cities will be hotspots of risks from climate change and climate-induced in-migration, which will amplify pre-existing stresses such as poverty, informality, social and economic exclusion, and governance.

Increasing temperatures are likely to cause drought-associated conflict risk.