Rainfall and Pressure

Broad General Education (BGE)

Fourth Level: People, Place and the Environment

I can demonstrate an understanding of weather and climate by explaining the relationship between weather and air pressure.

  • Explains links between weather and air pressure

A data based resource looking at rainfall and pressure: Worksheet below and Teachers Notes

Alternative resource: Red sky at Night, Shepherd’s Delight worksheet and Teacher’s Notes – a resource looking at how our prevailing wind direction means this saying is largely true.

Name:                                                                                                                                      Date:

Investigating the Link Between Between Pressure and Rainfall

Here is some data collected by a weather station on the outskirts of Edinburgh, at the start of 2019.

pressure rainfall data

Using this data, draw a graph of rainfall against pressure.

blank graph paper

Now use this information to complete the following sentences:

The most it rained in one day was _______________mm.

It didn’t rain at all on ____________ days.

The highest pressure recorded was ______________hPa (a hPa is the same as a millibar).

The lowest pressure recorded was _______________hPa.

Does it always rain when the pressure is low? Use figures to justify your answer.

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Does it ever rain when the pressure is high? Use figures to justify your answer.

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Many weather apps assume that if the pressure is low, it will rain. Does your graph justify this assumption?

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Extension:

Here are the weather maps for 4 of the days when it rained: the first 3 show when the pressure was low and the 4th shows when the pressure was high and it rained.

weather charts

In Depth – The Global Atmospheric Circulation

Global Atmospheric Circulation

One part of the Earth’s surface is always facing the Sun – it varies between the Tropic of Cancer at the June solstice to the Tropic of Capricorn at the December solstice.

This latitude receives the most energy per unit surface area, and is known as the Inter-Tropical Convergence Zone or ITCZ. Here, the air rises, hits the top of the troposphere and spreads out towards the poles. The Coriolis Effect means that this poleward moving air is deflected ever more to the right, becoming westerly (remember we name winds by the direction they are blowing from) and eventually sinking in the sub-tropics and returning towards the ITCZ – this time becoming easterly and giving us the Trade Winds. The whole circulation is known as the Hadley Cell (Figure 1).

FIGURE 1: A CROSS SECTION THROUGH THE ATMOSPHERE, SHOWING AIR RISING AND FORMING DEEP CLOUDS, AT THE INTERTROPICAL CONVERGENCE ZONE AND SPREADING POLEWARDS, AND THE HADLEY, FERREL AND POLAR CELLS.

Similarly, at the poles where the ground surface is coldest, the air sinks, spreads out towards the Tropics, is deflected to the right and eventually rises and completes a circulation – the Polar Cell.

In between, lies the ‘Ferrel cell’, characterised by surface westerlies and rising motion around 60°. This cell is actually the net product of all the mid-latitude weather systems. Figure 2 shows the 3-Dimensional circulation of the atmosphere.

It’s worth noting that, if the Earth wasn’t rotating, we’d have just one ‘thermally direct’ cell with air rising at the ITCZ and sinking at the poles where the ground is coldest.

The polar and sub-tropical High pressure areas are the source regions for air masses.

Teaching Resources

Global atmospheric circulation from Weather and Climate: a Teachers’ Guide.

Data and Image Sources

Take a look at the current air flow on the surface of the Earth, can you make out the Trade Winds? Do they tend to be stronger over land or ocean? Where is the ITCZ at the moment?

In Depth – Air Masses

Air Masses

An air mass is a large body of air with relatively uniform characteristics (temperature and humidity). Air masses are classified according to their source region and track.

There are six air masses (Figure 1) which can affect the weather in the UK – Polar Maritime is the most common, but we can also experience Polar Continental, Tropical Maritime, Tropical Continental, Arctic Maritime and Returning Polar Maritime air.

The source regions tend to be semi-permanent anticyclones (associated with the sinking regions of the global atmospheric circulation) in the sub-tropics and polar regions (‘tropical’ or ‘polar’ air). Air masses acquire their characteristics by contact with the underlying surface in the source region.

The UK sometimes also get Arctic air, which has travelled straight south from the Arctic. Returning polar air is polar air which changed direction over the Atlantic, hitting the UK from the west or even south of west, but still polar in nature.

FIGURE 1: THE 6 AIR MASSES WHICH CAN AFFECT THE WEATHER IN THE UK

Southward moving air is warmed from below as it passes over warmer land and water and becomes more unstable, eventually rising and producing convective cloud – eg puffy cumulus clouds. When you look at these clouds you can sometimes watch the air rising and the cloud bubbling up. In contrast, northward flowing air is cooled from below and becomes more stable.

Air travelling over the sea is moistened and we refer to this as ‘maritime’ air, whereas the moisture in air with a continental track hardly changes and so this is known as ‘continental’ air.

Looking at Figure 1, it’s easy to think that the North East of the UK always experiences Polar Continental air, whilst the South West always experiences Tropical Maritime air etc, but this is not the case. Usually, the whole country experiences the same air mass at the same time. A front is where two air masses meet.

The table below which summarises what is happening to the air from the four major air masses as they approach the UK.

The satellite image in Figure 1, shows Tropical Continental air over much of continental Europe and the UK. Although there is a front coming in from the west, before it arrives much of the UK is cloud free and sunny. However, it’s worth noting those small, puffy blobs of cloud over the centre of Spain and France. In small areas, the sun has warmed the ground enough to make the air there rise and form localised summer thunderstorms.

FIGURE 1: A SATELLITE IMAGE SHOWING TROPICAL CONTINENTAL AIR OVER MUCH OF THE UK AND CONTINENTAL EUROPE.© COPYRIGHT EUMETSAT/MET OFFICE

In Figure 2 you can see a typical satellite image showing Polar Continental air. Air blowing off Scandinavia is initially very cold and dry, giving a clear band of sky in the east North Sea and Baltic. However, as it travels over the water it picks up moisture and eventually cloud forms – over the western North Sea and the first bit of the UK it reaches – the east coast.

FIGURE 2: A SATELLITE IMAGE SHOWING POLAR CONTINENTAL AIR OVER THE UK AND NORTH SEA © COPYRIGHT EUMETSAT/MET OFFICE

Figure 3, shows a very characteristic winter satellite image, as Polar Maritime air dominates UK weather. In the winter, the ocean is warmer than the land as well as being the moisture source – most of the convection (warm air rising) and rainfall occurs there. You can see the small blobs of convective cloud – puffy, cumulus clouds. The first bit of land the air reaches will be the west coast of Ireland, Wales, Scotland and England. As the air rises over the land, it cools further and more cloud, and rain, form.

FIGURE 3: A SATELLITE IMAGE SHOWING POLAR MARITIME AIR OVER MUCH OF THE NORTH ATLANTIC AND EUROPE © COPYRIGHT EUMETSAT/MET OFFICE

In Tropical Maritime air (Figure 4), the air is cooling as it travels North, so the cumulus clouds associated with convection don’t form. However, the air is cooling without rising, so cloud can still form – this time in large horizontal sheets of stratus cloud. Again, the water source is the ocean, so the cloud mainly forms there. This cloud won’t produce rainfall as heavy as that associated with polar air, but might give a steady drizzle.

FIGURE 4: A SATELLITE IMAGE SHOWING TROPICAL MARITIME AIR © COPYRIGHT EUMETSAT/MET OFFICE

Teaching Resources

The animations in this YouTube film can also be found here

Air Mass resources from Weather and Climate: a Teachers’ Guide (with classroom resources and support information for teachers)

Air-Masses-Human-Board-Game

https://www.metlink.org/secondary/key-stage-4/airmasses-2/

http://www.metoffice.gov.uk/learning/learn-about-the-weather/how-weather-works/air-masses

https://www.metlink.org/secondary/key-stage-4/airmasses/

Case studies of UK air masses (November 2010, November 2011 and the end of September 2010) with answers for teachers and a case study of arctic maritime air (Jan/ Feb 2015) can be found on our case studies page. Tc air mass and Saharan Dust. Arctic Maritime air case study (May 2020). 

Data and Image Sources

Take a look at the current surface air flow on earth.nullschool.net. Which air mass is affecting the UK now?

The followingYouTube clip from the BBC programme, The Great British Weather gives a great introduction to air masses.

In Depth – Rainfall and Relief

Precipitation has been recorded in the British Isles for over 200 years. Through the dedication and enthusiasm of W R Symons, the mid-19th century saw the formation of the British Rainfall Organisation whose main objective was to establish a countrywide network of rain gauges where daily measurements were made. This network has grown to over 7,000 gauges today, including many that are automatic. 

As most people in the British Isles know, precipitation can be extremely variable, both in intensity and duration. The spatial distribution of precipitation during an individual month is very uneven, just as it is on an individual day. Rainfall in Britain is associated with several distinct synoptic situations; all places may get rain from most such types, but some areas get more from some types than others. Therefore, it is not surprising that patterns of temporal variation of rainfall are complex.

Precipitation over the British Isles is the result of one or more, of three basic mechanisms.

1. Cyclonic, or frontal, rain associated with the passage of low-pressure systems. Bands of rain are associated with the passage of warm and cold fronts across the UK. These rain events are caused by the uplift and cooling of moist air parcels.

2. Convectional, with local showers and thunderstorms, caused by the localised thermal heating and overheating of the ground surface. Large towering cumulonimbus clouds may be generated, producing heavy rain.

3. Orographic, or relief rain, with precipitation increasing with altitude over upland areas. The mechanism for relief rain is the uplift and cooling of moist air over upland areas. The normal rate of cooling (environmental lapse rate) is 6.5 °C per 1,000 metres. Therefore, near the summit on the windward side of the hill or mountain, the air will have cooled sufficiently for thick cloud, rain and possibly snow to fall.

Air will descend and warm on the leeward side, so there is little or no rain on this leeward side of the hill or mountain. This is called a rain shadow, and sometimes there are warm winds in these sheltered areas as the air, now much drier than during its ascent, descends quickly and warms up. This is called a föhn effect, and the warm winds are called föhn winds.

Rain forms when air cools, the rate of condensation becomes faster than the rate at which water is evaporating and cloud droplets form. If these get big enough, they form as rain – or snow, sleet or hail.

There are various ways in which the air can cool to form rain – three common types which are often talked about are frontal, orographic or relief and convective rain. Frontal Rain
This is found where warm air meets cold at the cold and warm fronts in a depression.


Convective Rain

Convection is the term given to warm air rising. Convection is normally marked by cumulus clouds which billow upwards as the air rises. The base of such clouds is usually flat, marking the level where temperatures are cold enough for more condensation to be going on than evaporation.


Image copyright RMetS

Extreme convection can be found in thunder clouds – towering cumulonimbus, which can reach all the way up to the top of the troposphere – the lowest 10km or so of the atmosphere in which our weather is found. As air can’t rise into the stratosphere above, the top of the cumulonimbus cloud spreads out, giving it a characteristic ‘anvil’ shaped top. Such convection can occur where the ground has become particularly warm, heating the air above it. It is particularly associated with the Tropics, characteristically giving heavy rain in the late afternoon.

Cumulonimbus clouds can give heavy rain, hail, thunder lightning and sometimes tornadoes.


Cumulonimbus cloud over Kettering, UK, August 2014
Image copyright Sylvia Knight

Orographic or Relief Rain
When air is forced to rise over land, particularly higher ground such as hills and mountains, it cools as the pressure falls. Dry air cools at 9.8°C per 1000m it rises. Eventually, the air can cool enough for cloud to form.


Orographic cloud forming upstream of the Matterhorn
Image copyright RMetS

The cloud droplets may get big enough to fall as rain on the upstream side of the mountain. If that happens, then, when the air has passed over the top of the mountain and starts to descend, and warm, on the far side, there will be less water to evaporate back into the air. The air will end up drier than it was on the upstream side of the mountain.

This can produce ‘rain shadow’ – an area of land downstream from some mountains (for the prevailing wind direction, in the UK, this would be to the east) where there is noticeably less rainfall. The Gobi desert in Mongolia and China is so dry because it is in the rain shadow of the Himalayas.

Orography can enhance frontal or convective rain; for example, we have explored how polar maritime air, our prevailing air mass, brings convective rain to the Atlantic. As the air reaches the UK and rises over the land, the precipitation is increased.


A precipitation map showing the rainfall ‘climate’ (averaged over 30 years) of the UK. With prevailing westerly winds, there is clearly more rain on the western side of the country, enhanced by the mountains of Wales and Scotland and the English Pennines.
As well as being drier on the downwind side of the mountains, it can also be warmer. Remember that water releases heat into the atmosphere as it condenses and takes it up as it evaporates. If there is less water in the air on the downwind side, then there is less to evaporate and not all the heat that was released on the upwind side will be taken up again. This is known as the Föhn Effect.

The onset of a Föhn is generally sudden. For example, the temperature may rise more than 10°C in five minutes and the wind strength increase from almost calm to gale force just as quickly. Föhn winds occur quite often in the Alps (where the name originated) and in the Rockies (where the name chinook is used). They also occur in the Moray Firth and over eastern parts of New Zealand’s South Island. In addition, they occur over eastern Sri Lanka during the south-west monsoon.

Where there are steep snow-covered slopes, a Föhn  may cause avalanches from the sudden warming and blustery conditions. In Föhn conditions, the relative humidity may fall to less than 30%, causing vegetation and wooden buildings to dry out. This is a long-standing problem in Switzerland, where so many fires have occurred during Föhn conditions that fire-watching is obligatory when a Föhn is blowing.

 
 

Teaching Resources

A case study of orographic rainfall and Foehn winds in Scotland with images for students Image 1, Image 2Image 3Image 4Image 5.

Water in the Atmosphere from Weather and Climate: a Teachers’ Guide

Make a cloud in a bottle

Data and Image Sources

UK climate data from the Met Office

In Depth – El Nino/ La Nina

El Nino/ La Nina Every few years a very noticeable change comes about in the temperature of the equatorial Pacific Ocean. The eastern side, which is usually the coolest part, warms up considerably, particularly in the ‘tongue’ of cold water in the equatorial east Pacific seen in Figure 1, whilst temperatures in the west decrease a little.

 

FIGURE 1: ANNUAL MEAN SEA SURFACE TEMPERATURE (DEGREES C), AVERAGED FROM 1971-2000. NOTE THE VERY WARM WATER IN THE TROPICAL WEST PACIFIC AND THE COLD “TONGUE” ALONG THE EQUATOR IN THE EAST PACIFIC.© US CLIMATE PREDICTION CENTER

The result of this is that the gradient of temperature from east to west decreases. The atmosphere responds to this change with the heaviest rainfall moving out into the centre of the equatorial Pacific and the eastern side of the ocean also becomes much wetter. This shift has a big impact on land regions bordering the equatorial Pacific. Northeast Australia and Indonesia/Papua new Guinea become much drier whilst coastal parts of Peru and northern Chile, which are usually rather dry, experience much more rain.

The increase in ocean temperatures is known as an ‘El Niño’ event and has been known about for well over 100 years. The name, which means ‘the boy child’ in Spanish, derives from the fact that the warming tends to be strongest around Christmas time and was named by the fishermen of Peru. They noticed that, around Christmas every 3-7 years or so the fish stocks in the equatorial Pacific reduced as the water warmed. The opposite phenomenon often occurs the following year when the eastern equatorial Pacific becomes even colder than normal and the west becomes even warmer. This leads to flooding in Indonesia and eastern Australia and drought conditions in Peru and Northern Chile. This state of the ocean is known as ‘La Niña’, or the ‘girl child’.

Both El Niño and La Niña affect weather patterns far beyond the equatorial Pacific as the whole global pattern of winds and precipitation in the atmosphere adjusts to the changes in the Pacific. The southern USA tends to experience wetter winters during El Niño episodes whereas north-eastern Brazil and south-east Africa become drier than normal. Western Canada, south-east Asia and Japan all tend to be warmer than normal during an El Niño event and in fact the average temperature of the atmosphere averaged around the whole globe tends to be higher than normal in the months during and immediately following an El Niño event, as vast amounts of heat are transferred from the ocean into the atmosphere.

FIGURE 2: THE IMPACT OF EL NINO ON GLOBAL TEMPERATURES © CROWN COPYRIGHT, MET OFFICE.

The processes in the ocean and atmosphere that control the evolution of El Niño events are complex. 

Teaching Resources El Nino Southern Oscillation introduction An excellent summary of the El Nino Southern Oscillation and how it affects the rest of the world at http://rgsweather.com/2015/11/01/el-nino-how-does-it-impact-uk-winter-weather/.

The US National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) has a web-based tutorial. 

Data and Image Sources There have been some lovely images recently of the Atacama desert in bloom as a result of increased El Niño related rainfall in South America.T

Models for Climate Change

Here is a broad range of simple (ish) climate models suitable for relatively advanced students:

Depressions: Case Study Template and Storm Eunice Example

Download editable worksheet.
This can be used to create a case study of a named depression in the UK. Below, we have given an example of how the worksheet could be used to create a case study of Storm Eunice.
Depressions are low pressure weather systems which bring rain, wind and sometimes snow to the UK. They are responsible for much of our extreme weather.   A depression is easily recognisable on weather charts and satellite images. It has low pressure in the centre with warm, cold and occluded fronts and a hook shaped cloud.
Storm Eunice cloud and wind

In the UK, storms have been given names since 2015. A storm is named if it is likely to have a significant impact on the UK or Ireland.

  1. Write down the names of any recent storms you can remember. Eunice
  2. Use the Met Office storm centre index to discover the date that one of those storms had an impact on the UK/ Ireland (if your storm isn’t in the current year, scroll to the bottom of the page to the Related Links section for previous years).

Storm Name: Eunice Date: 18th February 2022

Now download the weather charts for the storm. 

In the bottom left of the page, where is says ‘Archiv – Basistermin, enter the date of the storm in the format day – month – year

3) Copy and paste the weather map onto this document.

4) Put a red circle around the centre of the storm. This is marked by a cross and the pressure value at the centre of the storm is given.

Now use the single forward arrow to advance the chart by 6 hours.

5) Copy and paste the weather map onto this document.

6) Put a red circle around the centre of the storm

Storm Eunice

Now use the single forward arrow to advance the chart by 6 hours.

7) Copy and paste the weather map onto this document.

8) Put a red circle around the centre of the storm

9) Now complete the table using information from your three weather maps:

Eunice centre data

Winds rotate around a depression in an anticlockwise direction, following the pressure contours. 

10) Use ‘insert’ and ‘shapes’ to add arrows showing the wind direction around the storm to the first of your weather maps.

In addition to naming storms, sometimes colour coded weather warnings are given. The colour of the warning depends on a combination of how much damage the storm is expected to do, and how likely that damage is. So a storm that is very likely to cause a lot of damage is given a red warning, but a yellow warning could mean that a storm is either very likely to cause a bit of damage, or unlikely to cause a lot of damage.

weather warning matrix

11) Go back to the Met Office storm centre https://www.metoffice.gov.uk/weather/warnings-and-advice/uk-storm-centre/index and click on your storm’s name – this should give you a summary sheet about your storm. Scroll through it – were any weather warnings issued? List them below, or write ‘none’.

Eunice warnings

Extension

Use the Met Office summary sheet you just opened, or BBC news https://www.bbc.co.uk/news to write a paragraph about the impacts of your storm.

Storm Eunice had significant impacts, including four fatalities and significant wind damage. However, with weather warnings issued almost a week in advance, the precautionary measures people were able to take, for example closing schools, meant that damage was minimised. 

 

Core Maths – EVolution of vehicle sales

Resource produced in collaboration with MEI

Brief overview of session ‘logic’

  • Explore the infographic – what can be worked out from this information and what questions does it raise?
  • Look at trends in vehicle registrations
  • Look at proportions of types of newly registered vehicles over time – why has the percentage of petrol cars being registered increased from 2015 to 2020?
  • Do some calculations to show that the number of petrol cars being registered has decreased from 2015 to 2020.
  • Reflect upon the implications for misleading representations of data
  • Consider the implications of the ban on new petrol and diesel cars by 2030 – what affect will this ban have on the proportions of car types being registered?
  • What questions does the increase in electric vehicles raise?

Mathematical opportunities offered

  • Interpretation of data, statistics, graphs, infographics in context
  • Critiquing graphs
  • Reading scales
  • Calculating percentages
  • Exploring proportions of quantities over time
  • Making conjectures about future proportions given available data
  • Analysing and comparing data in order to develop and present a conclusion.
Download the resources
  1. Session plan
  2. Presentation
  3. Student sheet

Core Maths – Extreme Weather

Resource produced in collaboration with MEI

Brief overview of session ‘logic’

  • Do reports of extreme cold weather provide evidence that global warming is not happening?
  • Show the New York Times graphs of summer temperature distributions for the Northern Hemisphere for different periods.
  • Interrogate/critique these graphs
  • The distributions of temperatures are approximately Normal distributions and the mean and standard deviation both increase as the time period becomes more recent.
  • Use the dynamic bell curve to calculate probabilities of different temperatures in different time periods.
  • Despite the mean temperature increasing, the standard deviation also increasing means that the probability of extreme low temperatures increases.
  • Normal distributions and bell curves can explain a higher frequency of extreme cold weather despite global warming.

Mathematical opportunities offered

  • Interpretation of data, statistics, graphs, infographics in context
  • Critiquing graphs
  • Reading scales
  • Using standard form to write very large or very small numbers
  • Fitting a Normal distribution or bell curve to a graph
  • Exploring the effect of adjusting mean and standard deviation on a bell curve
  • Understanding that probabilities can be represented and calculated using areas
  • Analysing and comparing data in order to develop and present a conclusion.

Core Maths – Trees and Carbon Capture

Resource produced in collaboration with MEI

Brief overview of session ‘logic’

  • Why trees are good
  • How much carbon do trees sequester?
  • How does the amount of carbon sequestered by a tree change during its lifecycle?

Mathematical opportunities offered

  • Interpretation of data, statistics, graphs, infographics in context
  • Critiquing graphs
  • Analysing and comparing data in order to develop and present a conclusion
  • Making assumptions
  • Making predictions
  • Reading scales
BACK TO TOP