Secondary Maths Lessons

Developed in Partnership with Dr Frost Learning, these resources are suitable to 11-16 maths teaching (KS3 and KS4 in England), unless otherwise indicated.

Each lesson features a lesson PowerPoint as well as printable exercise and investigation sheets.

Substitution with the Four Operations and Integers

Substitution is the process of replacing the variables in an algebraic expression, usually with a numerical value. We can then work out the total value of the expression.

Climate change context

Calculating household carbon dioxide emissions

Prior Learning:

  • Negative numbers and arithmetic
  • Decimals and arithmetic
  • Fractions and arithmetic
  • Powers and roots
  • Basic algebraic notation
  • Using function machines & their inverses

Lesson ppt

Exercise pdf

Integer Substitution with Powers and Roots

Climate change contexts:

Substitution and the Sahara

Rainforest deforestation

Prior Learning

  • Substitution with four operations and integers
  • Using notation for powers and roots
  • Knowing powers and roots with base 2, 3, 4, 5 and 10

Lesson ppt

Exercise pdf

Substitution with Fractions and Decimals

Prior Learning

  • Decimals and arithmetic
  • Fractions and arithmetic
  • Powers and roots
  • Basic algebraic notation
  • Substitution using integers with the four operations
  • Substitution using integers with powers and roots

Lesson ppt

Exercise pdf

Investigation Sheet 1 – Wind Turbine

Investigation Sheet 2 – Wind Turbine

Form Simple Expressions

Climate Change Contexts

Arctic warming

Building insulation

Carbon footprint of social media

Emissions reductions

Prior Learning

  • Use and interpret algebraic notation, including:

–ab in place of a×b,

–3y in place of y+y+y and 3×y,

–a/b in place of a÷b,

–coefficients written as fractions rather than as decimals.

–brackets

  • Simplify expressions with sums, products and powers including index laws
  • Distinguish between expressions, equations, inequalities, terms and factors
  • Algebraic substitution
  • Recognise & create equivalent expressions
  • Order of operations

Lesson ppt

Exercise pdf

Form and Use Simple Formulae

Climate Change Contexts

Tree planting

Vehicle emission reductions

Solar panel output

Prior Knowledge

  • Use and interpret algebraic notation, including:

–ab in place of a×b,

–3y in place of y+y+y and 3×y,

–a/b in place of a÷b,

–coefficients written as fractions rather than as decimals.

–brackets

  • Simplify expressions with sums, products and powers including index laws
  • Distinguish between expressions, equations, inequalities, terms and factors
  • Algebraic substitution
  • Recognise & create equivalent expressions
  • Order of operations
  • Form simple expressions

Lesson ppt

Exercise pdf

Form and Solve Linear Equations from Simple Contexts

Climate Change Context

Emission reductions and net zero

Prior Knowledge

  • Solve simple linear equations.
  • Solve linear equations with brackets.
  • Solve linear equations where the variable appears on both sides of the equation.
  • Solve linear equations involving brackets.
  • Expanding single brackets.
  • Form simple expressions & formulae.
  • Use and interpret algebraic notation, including:

–ab in place of a×b,

–3y in place of y+y+y and 3×y,

–a/b in place of a÷b,

–coefficients written as fractions rather than as decimals.

–Brackets.

Lesson ppt

Exercise pdf

Form and Solve Linear Equations for Problems Involving Perimeter and Area

Climate Change Context

Carbon footprint/ growing food

Tree planting

Prior Knowledge

  • Find the area and perimeter of simple shapes.
  • Solve simple linear equations.
  • Solve linear equations where the variable appears on both sides of the equation.
  • Expanding single brackets.
  • Form simple expressions & formulae
  • Use and interpret algebraic notation, including:

–ab in place of a×b,

–3y in place of y+y+y and 3×y,

–a/b in place of a÷b,

–coefficients written as fractions rather than as decimals.

–Brackets

  • Simplify expressions with sums, products and powers including index laws
  • Distinguish between expressions, equations, inequalities, terms and factors
  • Algebraic substitution
  • Recognise & create equivalent expressions
  • Order of operations

Lesson

Exercise 1

Exercise 2

Mixed Exercise

Changing the Subject – One Step

Climate Change Context

Ocean Warming

Prior Knowledge

    • Solve simple linear equations.
    • Expanding single brackets.
    • Form simple expressions & formulae
    • Use and interpret algebraic notation, including:

    –ab in place of a×b,

    –3y in place of y+y+y and 3×y,

    –a/b in place of a÷b,

    –coefficients written as fractions rather than as decimals.

    –Brackets

    • Simplify expressions with sums, products and powers including index laws
    • Distinguish between expressions, equations, inequalities, terms and factors
    • Algebraic substitution
    • Order of operations

Lesson

Exercise 1

Dr Frost Learning is a UK registered charity with goal of delivering high quality education for all individuals and institutions regardless of income, centred around the philosophy that education is a fundamental right of all and central to addressing social inequality on a global level. The charity was founded by Dr Jamie Frost and he received the Covid Hero Award in the Global Teacher Prize 2020.

Dr Frost Learning
Climate Change Quality Mark Content

A Shrinking Rainforest

  1. In a simple model, the surface area, S km2, of a shrinking rainforest depends on the time, t, in years since 1980.

The following information is available for rainforest A.

  • its surface area in 1980 was 300,000 km2
  • its surface area in 1981 was 294,000 km2
a) Use an exponential model to form, for rainforest A, a possible equation linking S with t.

[4 marks]

The surface area of rainforest A is monitored over a 30-year period. Its surface area after 30 years is 150,000 km2.

b) Evaluate the reliability of your model in light of this information.

[2 marks]

The following information is known about rainforest B.

  • it had the same surface area, in 1980, as rainforest A
  • it is harder to access by road, so the rate of deforestation is less than rainforest B and its surface area decreases more slowly than that of rainforest A
c) Explain how you would adapt the equation found in (a) so that it could be used to model the surface area of rainforest B.

[1 mark]

Rainforest Deforestation the Carbon and Water Cycles

This news item from NASA relates to this animation, as does this Nature Communication from October 2020.

Suggested learning activities:

Data and GIS exercise for A Level students

Explore leaf area, evapotranspiration and temperature data using various statistical techniques to explore the relationship between deforestation and weather on this resource on the RGS website.

Activity 1:
Ask students to write a voiceover for the film, demonstrating their understanding of the concepts involved.

Activity 2:
Complete this sentence based on the film:
When rainforests are deforested, places downwind are left with more/ less/ the same amount of rainfall and greater/ less/ the same amount of flood risk.

Activity 3:
Look at www.globalforestwatch.org/map and identify a Tropical region which has experienced deforestation in the last decade.
Look at earth.nullschool.net. What is the prevailing wind direction in that region?
Using www.google.com/maps, write a paragraph explaining how you think the water cycle has been affected by deforestation for a place downwind from the rainforest region you identified.

Activity 4:
Having watched the animation, use https://www.globalforestwatch.org/map , http://earth.nullschool.net and https://www.google.com/maps to write a paragraph explaining how you think the water cycle has been affected by deforestation for a specific place downwind and/ or downriver from a rainforest region.

Activity 5:
Having watched the animation, read these articles from Nature and NASA (noting that this predates the Nature article), NASA (2019)Geography Review (p22 – 25) and Carbon Brief.
Summarise the impact of tropical deforestation on the carbon and water cycles.

More information about the water cycle and climate change and the water cycle and an excellent summary from Cool Geography.