Integer Substitution with Powers and Roots: Exercise

a	$y^2 + 11$ when $y = -2$	d	$\sqrt[3]{2p}$ when $p = -32$
b	$3a^2 + 3$ when $a = 7$	е	$2\sqrt{3g-4h}$ when $g = 3$, $h = -4$
С	$(2m + 5)^2$ when $m = -10$	f	$\sqrt{4y} - \sqrt[5]{-2x}$ when $x = 16, y = 4$

3 What value of x would make the following equations equal 0? Choose from one of the four options available for each question.

a	$\sqrt{2x-4}$	A: <i>x</i> = 1	B: $x = -1$	C: $x = 2$	D: $x = -2$
b	$2\sqrt{x} - 16$	A: <i>x</i> = 4	B: $x = -4$	C: <i>x</i> = 64	D: $x = -64$
С	$x^2 + x - 6$	A: <i>x</i> = 1	B: <i>x</i> = 2	C: <i>x</i> = 3	D: <i>x</i> = 4
d	$x^2 + 9x + 20$	A: <i>x</i> = −1	B: $x = -2$	C : <i>x</i> = −3	D: $x = -4$
е	$49 - x^2$	A: <i>x</i> = 7	B: <i>x</i> = 49	C: $x = 0$	D: Impossible

Questions c - e have another solution that make the equation equal to 0. Find the other solution for each question.

4	The stopping distance, d, of a car can be found using the formula $d = \frac{mv^2}{2f}$ where m is the mass of the car in kilogram (kg), v is the speed of the car in metres per second (m/s), f is the braking force in Newtons (N), and d is the distance in metres (m).
a	A car has mass 850 kg and moves at a speed of 10 m/s. If the car has a braking force of 2500 N, what will the braking distance of the car be?
b	A car has mass 1000 kg and moves at a speed of 30 m/s. What would the braking force need to be for the braking distance to be 450 m?
×	The deforestation of a rainforest can be modelled by looking at historical data.
	Below a formula has been created for the surface area of a rainforest, S, in km ² t years after 2020. $S = 200,000 \times 0.95^{t}$
a	What was the surface area of the rainforest in 2020?
b	What was the surface area of the rainforest in 2023?

We can calculate the rate of deforestation in the next 10 years from 2023 using the following formula:

$$r = 1 - \sqrt[10]{\frac{S}{171475}}$$

What is the rate of deforestation if the surface area, S, is 150,000 km², 10 years after 2023?