Integer Substitution with Powers and Roots: Exercise

1 Given that $z=6$, work out the following:
a) z^{2}
(b) $\frac{z^{2}}{3}$

C $-z^{2}$
d $30-z^{2}$
(e) $2 z^{2}$

2 Work out the value of....
(a) $y^{2}+11$
when $y=-2$

$$
3 a^{2}+3
$$

b when $a=7$
$(2 m+5)^{2}$
c when $m=-10$
f $4 \sqrt{Z}$
g $\sqrt[3]{3 z}$
h $\sqrt{2 z-2}$
(i) $\sqrt[3]{z^{3}}$
(j) $\sqrt[5]{-3 z^{2}}$
e $2 \sqrt{3 g-4 h}$ when $g=3, h=-4$
$\sqrt{4 y}-\sqrt[5]{-2 x}$
f when $x=16, y=4$

3 What value of x would make the following equations equal 0 ? Choose from one of the four options available for each question.
a) $\sqrt{2 x-4}$
A: $x=1$
B: $x=-1$
$\mathrm{C}: x=2$
D: $x=-2$
b $2 \sqrt{x}-16$
A: $x=4$
B: $x=-4$
C: $x=64$
D: $x=-64$

C $x^{2}+x-6$
A: $x=1$
B: $x=2$
C: $x=3$
D: $x=4$
d $x^{2}+9 x+20$
A: $x=-1$
B: $x=-2$
C: $x=-3$
D: $x=-4$
e $49-x^{2}$
A: $x=7$
B: $x=49$
$\mathrm{C}: x=0$
D: Impossible
f Questions c - e have another solution that make the equation equal to 0 . Find the other solution for each question.

4 The stopping distance, d, of a car can be found using the formula $d=\frac{m v^{2}}{2 f}$ where m is the mass of the car in kilogram (kg), v is the speed of the car in metres per second $(\mathrm{m} / \mathrm{s})$, f is the braking force in Newtons (N), and d is the distance in metres (m).
a A car has mass 850 kg and moves at a speed of $10 \mathrm{~m} / \mathrm{s}$.
If the car has a braking force of 2500 N , what will the braking distance of the car be?
b A car has mass 1000 kg and moves at a speed of $30 \mathrm{~m} / \mathrm{s}$.
What would the braking force need to be for the braking distance to be 450 m ?
\& The deforestation of a rainforest can be modelled by looking at historical data.

Below a formula has been created for the surface area of a rainforest, S, in km^{2} t years after 2020.

$$
S=200,000 \times 0.95^{t}
$$

a What was the surface area of the rainforest in 2020?
b What was the surface area of the rainforest in 2023?

We can calculate the rate of deforestation in the next 10 years from 2023 using the following formula:

$$
r=1-\sqrt[10]{\frac{S}{171475}}
$$

C. What is the rate of deforestation if the surface area, S, is $150,000 \mathrm{~km}^{2}, 10$ years after 2023?

