Fraction and Decimal Substitution with Powers and Roots: Exercise

1. Find the value of the following expressions when \(a = -0.5 \):
 - a. \(a^2 \)
 - b. \(2a^2 \)
 - c. \(2a^2 + 5 \)
 - d. \((2a)^2 + 5 \)
 - e. \(3a^2 + 2a \)
 - f. \(a^3 + 2a^2 \)
 - g. \((4a)^5 - 2a^2 \)
 - h. \(\frac{8a^6}{4a^2} \)

2. Given that \(x = \frac{2}{5} \) and \(y = -\frac{2}{3} \), find the value of \(25x^2 - 27y^3 \).

3. You are told that \(p = -0.5 \), \(q = \frac{1}{8} \) and \(r = 0.16 \). Find the value of the following expressions.

 Question a-e are non-calculator. Use a calculator for questions f-h and give your answers to 2 decimals places.
 - a. \(\sqrt{r} \)
 - b. \(\sqrt[3]{q} \)
 - c. \(\sqrt[3]{pr} \)
 - d. \(\sqrt{p^2 - r} \)
 - e. \(5\sqrt{r} \)
 - f. \(\sqrt{qr} + p \)
 - g. \(3\sqrt{qr} + p \)
 - h. \(\sqrt[5]{10r - \frac{q}{p}} \)

4. This formula can be used to calculate the displacement (\(s \) metres) of an object given its initial velocity (\(u \) m/s), time spent moving (\(t \) seconds) and acceleration (\(a \) m/s\(^2\)):
 \[
 s = ut + \frac{1}{2}at^2
 \]

 Find the value of \(s \), given that \(a = \frac{1}{50} \), \(u = 5.5 \) and \(t = 2.5 \).