Storm Surges

Watch this short animation to learn about the causes and impacts of storm surges in the UK, as well as the expected impact of climate change on them. 

At the bottom of the page, you can download a Knowledge Organiser to complement the animation.

With thanks to the students and staff at Boston College for their contribution to the animation. 

Isaac Physics

Isaac Physics logo

A diverse range of questions based on applications of physics in weather and climate, including sea level rise, radar frequencies,  aerosols, oceanic circulation, tidal barrages etc. 

Isaac Physics is an online study tool developed by the University of Cambridge. Isaac Physics questions are self marking practice questions for secondary school and undergraduate scientists. 

Snowflake fall speed

Aerosol attenuation

Barometric formula

Concentration of Oxygen

Cooling Tree

Electric Car Electrics

Electric Charge of Earth

Hadley Cell

How much Rain?

Isotrope Concentrations and Ocean Circulation

Kite Heights

Radar Reflectivity Units

Radar wavelengths and frequencies

Earth radiation balance

Sea Level Rise

Temperature Records and Uncertainties

Tidal Barrage

Urban Heat Island

Wind Turbine

Wind Turbine Power

Mass of the Atmosphere

Maths for Planet Earth

Climate-based questions for students and teachers. A team of students and academics at the University of Oxford developed these Maths for Planet Earth questions.

Physics – Egypt’s Benban Solar Farm

In this resource linked to COP27 in Egypt, physics students explore renewable energy production.

Learning Objectives

  • Recognise that solar power is a renewable energy source of great value in Egypt
  • Describe the energy transfer in a solar cell
  • Evaluate the energy dissipated in the Benban solar farm
  • Calculate the cost of the energy produced using the formula cost = power (kW ) x time (hours) x price (per kWh).


In its acceptance speech at COP26, Egypt celebrated its renewable energy resources:

This is an extract from from 09:20

Egypt transitioned from the traditional energy sources to renewable, more sustainable and planet-friendly energy sources…

One of these resources is the huge Benban solar farm.

Lesson Introduction

Watch the relevant part of the COP26 plenary video and/ or

  • The Benban solar farm was supported by the Green Climate Fund. Contributions to the Green Climate Fund were one of the areas which didn’t make as much progress as was hoped at COP26 in Glasgow, 2021.
  • COP27 will be at Sharm El-Sheikh in Egypt in November 2022.
Benban - map
Benban map

images from google maps

Discussion points:

  • What is a renewable energy source?
  • Why is it important to develop renewable energy sources?
  • What is a solar cell and how is it different from a solar panel? Where have people seen solar cells/ panels?
  • What makes a location suitable for a huge solar energy farm? (space, sunshine, access for bringing the equipment in and getting the electricity out…)
  • Could we build such a huge solar park in the UK? (no, we don’t have a big desert, but you could research some UK solar farms)
  1. Use to compare the global horizontal irradiation where you live with that in Benban. (for Benban the value is given as 2366 kWh/m2).
    Global horizontal irradiation is the total amount of solar energy reaching a 1m2 horizontal surface on the ground in a year.

    Discussion point: What is a kWh? (if 1 kWh is the electrical energy converted by a 1 kW appliance used for 1 hour rephrase this in terms of electrical energy generation. See for more detail)

    Discussion point: So what is a kWh/ m2?

    Extension: Express this answer as a proportion or percentage

  2. Discuss: what is the initial store of energy and by what pathways is it transferred? (nuclear store in the Sun, energy is transferred by light from the Sun to the panel and is transferred electrically from the panel to homes and businesses)
  3. The size of the Benban solar farm is 37.2 km2. Calculate the total energy carried by the light arriving at the site.

    (37.2km2 = 37 200 000m2 so 2366 x 37 200 000 = 88,015,200,000 kWh = 88 015.2 GWh = 88.0TWh)

    Discuss: kilo, mega, giga, Tera etc.

  4. The estimated output from Benban is 3.8TWh. How much energy is not converted usefully?
    88.0-3.8 = 84.2TWh

    Extension – write this as a proportion or percentage
    Discussion – why so much? Solar panels don’t cover the whole of the ground, solar panels are actually less efficient when they get hot, you can see solar panels, so they must be reflecting some of the Sun’s light, not absorbing it all etc.)

  5. What is the current electricity price in your region? (see and scroll down for regional breakdown).
    What is the value of the energy the Benban solar farm will produce during COP27, which is scheduled to last 2 weeks (assume there are 52 weeks in a year)?

    (cost = power (kW ) x time (hours) x price (per kWh).
    So value = 3, 800, 000, 000 kWh x 2/52 x 28.34 = £41,420,000.

    Discussion – is that surprising?

    Why might the quantity of electricity produced actually be different? (We started with an annual value, but the seasons and the weather will actually have an impact on how much is produced in a given week).

verified climate education resources

KS3 Geography – Egypt’s Construction Problem

In this resource linked to COP27 in Egypt, geography students explore population growth, urbanisation and climate change. 


The 2022 United Nations climate change conference (27th session of the Conference of Parties – COP27) will be held in Sharm El-Sheikh in Egypt, starting on the 7th of November.

In the introduction video screened at the end of COP26 in Glasgow, Egypt celebrated its adaptations and mitigations to climate change. In this resource, students will explore population growth, urbanisation and the greenhouse gas emissions from the construction industry in Egypt.



Learning Outcomes

  • To understand what COP27 is
  • To describe how the population of Egypt has grown and is projected to grow in the future
  • To be able to interpret a population pyramid for Egypt and use that to explain Egypt’s changing population
  • To explain how the construction industry has an impact on the climate and what steps can be taken to reduce that impact.

Optimising Flight Times

flight path

Calculate the best flight time from A to B and reduce greenhouse gas emissions!

The table below represents a cross section through the atmosphere and gives wind speeds (in m/s) in boxes which are 200km long and 1km high.

Your task is to pilot an aircraft, which flies at 230m/s when it is flying in the less dense atmosphere higher than 5km, and 150m/s when it is flying in the more dense atmosphere lower than 5km, from A to B in the shortest time possible.

Remember, flying in the same direction as the wind increases your speed but flying against the wind slows you down.

Map your route on the chart below and then calculate the flight time!


  1. You take off from the ground at A and land on the ground at B.
  2. You can only climb, or descend, one box per 200km.
  3. Give your final answer in hours and minutes.
flight data

Some students may find the following table useful:

flight time table

UK Energy Mix

In this activity students use current data to investigate  the UK’s energy sources.

Go to and use the table and the key at the bottom of the page to complete the following table. This website shows you where the UK’s electric power is coming from and what the total demand (use) is and has been over the past year.

(1 GW = 1 000 000 000W)

energy source table
  1. In some of the boxes, you may see a negative number – what does that mean?
  2. What is the total net amount of power we are currently getting from France, the Netherlands, Belgium and Norway?
  3. For the power generated in the UK, highlight all renewable energy sources.
  4. What is the total amount of power we are currently generating from fossil fuels in the UK?
  5. Looking at the graph headed ‘yesterday’, when would have been the best time to charge an electric car, if you wanted to use as much renewable power as possible? Why?
  6. Looking at the graph headed ‘last year’ which season(s) have the most energy generated by solar energy?
  7. Which season(s) have the most energy generated by wind energy?


By looking at the total energy demand, and the production by wind energy, what can you deduce is the purpose of gas turbines?

Can you see any correlation between wind output and gas turbine output?

Opportunity for Group Work

Make a poster or presentation showing what you have learned.

Cloud Cover and Light Levels

In this activity, students will test the hypothesis that “When the clouds are darker, more of the Sun’s light has been scattered and so less light reaches the ground”

Advice for teachers

Ideally, this activity should be carried out over a week or longer. This could mean that different classes contribute towards collecting the data.

You will need


  • Only compare light levels recorded by the same device/ app. Why?
  • Always measure the light levels at roughly the same time of day. Why?
  • Try and hold your device flat in your hand, with the surface horizontal, every time you make a measurement. Why?
cloud cover table


Draw a graph which shows light level against grey scale number

graph paper


  • Is there any relationship between the amount of light reaching the surface of the Earth and the colour of the clouds?
  • Do your results support the hypothesis?
  • Write a paragraph or draw a cartoon explaining how the thickness of a cloud affects what colour it looks and how much light there is near the ground. Make sure you include the words ‘visible light’ and ‘scatter’.

Air Pressure and Height


We can’t see or feel atmospheric pressure but rely on barometers to tell us how the pressure is changing.

Pressure changes with altitude. Changing weather patterns can also lead to changing atmospheric pressure.

For these exercises, you will need to download the phyphox app onto your phone or, if you are working in small groups, onto one person’s phone.

You will also need a tape measure (5m) and access to an open stairwell – the higher, the better!

phyphox app

Using the following information, calculate the theoretical atmospheric pressure at the surface of the Earth:

Total mass of the atmosphere: 5 x 1018kg

Radius of the Earth: 6370km (OR surface area of Earth = 5.1 x 10 14 m2)
Gravitational field strength, g = 10 ms-2

Pressure = force/ area
Pressure = mass x g/ (4 pi r2)
Pressure = (5 x 1018 x 10)/ (5.1 x 10 14)
Pressure = 98057 Pa

Alternative units: 1hPa = 100 Pa
1 millibar (mbar) = 1 hPa

Now open the app and select pressure:

phyphox app

Now use the forward arrow to start measuring the pressure:

phyphox pressure

Record the current air pressure in your classroom in Pa __________________________________

What proportion of the theoretical atmospheric pressure you calculated above it this (express your answer as a percentage)?___________________________

Move to an open stairwell and complete the following table, using a tape measure to record the vertical distance you have ascended between each measurement you make. Make sure that you make your first measurement at floor level.

pressure table

Now draw a graph of change in atmospheric pressure (dependent variable) against height (independent variable).

graph paper

Complete the following sentence “A pressure change of 1hPa indicates an altitude change of ____m”.

Extension Questions
Many smart phones, watches etc. are equipped with pressure sensors so that they can be used to calculate altitude.

1) If you used a phone (in flight safe mode) to measure the pressure inside an aeroplane in flight, why won’t it give you an accurate indication of the height you are flying at?

2) You are on a many-day expedition to the Himalayan mountains and you are using the pressure sensor in your watch to tell you how high you are. Why would it not be safe to rely on this information?

(resources created from ideas on

Ocean Warming and Kettles – Teachers’ Notes

Resource produced in conjunction with Sustainability Physics.

Students’ worksheet. 


  • The world’s oceans are heating. Their temperature is not rising as fast as that of the land or air, but they are the major store of the excess thermal energy resulting from greenhouse gas emissions
  • According to the abstract of this study the top 700m of the oceans have warmed by 0.18°C on average between 1955 and 2010. This resource investigates how big this store of thermal energy is.

Curriculum links

  • GCSE physics heat capacity, power calculations and estimation
  • GCSE maths standard form: the order of magnitude of the numbers is more important for this question than the numerical values

This could be used as a starter exercise: Can students do the whole question at once given only the radius of the Earth, the temperature rise and the specific heat capacity of sea water?

  1. Why does the temperature of the sea rise more slowly than the temperature of the land or air?
    Water has a higher heat capacity (4kJ/kg/°C for sea water) than land (2kJ/kg/°C for rock) or air (around 1kJ/kg/°C). For the same input of thermal energy, the increase in temperature is smaller for the ocean than it is for the land.
  2. Find the area of the Earth’s oceans using the following information: the radius of the Earth is 6371km and the oceans cover about 70% of the Earth’s surface.
    A = 4πR2 = 3.57 x1014 m2 ≈ 3.6 x1014 m2
    3. Find the volume of the top 700m of the oceans. Ignore all the coastal sections of the ocean which are shallower than 700m.
    V = A*height = 2.5 x17 m3
    4. Find the mass of the top 700m of the ocean. Use the density of seawater as ρ = 1025 kg/m3
    Mass = V* ρ = 2.56 x1020 kg ≈ 2.6 x1020 kg
    5. Find the energy required to give this mass a temperature rise of 0.18°C. The specific heat capacity of sea water is 4 kJ/kg/K
    Energy = C*Mass*ΔT = 1.8 x1023 J
    6. Find the average power over the 55 year heating period
    Power = Energy/time = 1.1 x1014 W
    7. How big is that power? Find the power ‘per person’ by dividing the total power by the number of people on Earth today (8 billion people)
    1.3 x104 W
    8. A kettle has a power of 2.5kW. How many kettles would each person on the Earth have to boil to have the same total power?
    1.3 x104 W / 2.5 x103 W = 5.3 ≈ 5
    The warming of the upper ocean between 1955 and 2010 is equivalent to the energy used by every person on Earth boiling 5 kettles continuously for 55 years! This question only considers the upper ocean. The lower ocean is also warming and storing energy.