Home » Teaching Resources » Weather Symbols and Synoptic Charts

Weather Symbols and Synoptic Charts

Facebook
Twitter
Pinterest
Print

Interpreting weather charts 

Introduction

Weather systems
Fronts
Relationship between isobars and wind
Understanding station plots on a weather map
Plotting a station plot

Introduction

Weather charts consist of curved lines drawn on a geographical map in such a way as to indicate weather features. These features are best shown by charts of atmospheric pressure, which consist of isobars (lines of equal pressure) drawn around depressions (or lows) and anticyclones (or highs). Other features on a weather chart are fronts and troughs. These are drawn to highlight the areas of most significant weather, but that does not mean that there is nothing of significance elsewhere on the chart.

Weather systems
High pressure or anticyclones

Anticyclones are areas of high pressure, whose centres are often less well defined than depressions, and are associated with quiet, settled weather. Winds blow in a clockwise direction around anticyclones in the northern hemisphere, this is reversed in the southern hemisphere.

Fig 1: An anticyclone

 

 

Low pressure or depressions

Depressions are areas of low pressure, usually with a well-defined centre, and are associated with unsettled weather. Winds blow in an anticlockwise direction around depressions in the northern hemisphere, this is reversed in the southern hemisphere.

Fig 2: A depression

 Fronts

Early weather charts consisted simply of station plots and isobars, with the weather being written as comments, like ‘Rain, heavy at times’. During the 1920s, a group of Scandinavian meteorologists, known collectively as the Bergen School, developed the concept of representing the atmosphere in terms of air masses. Since the air masses could be considered as being in conflict with each other, the term ‘front’ was used to describe the boundary between them. Three types of front were identified which depend on the relative movement of the air masses.

Cold Front

A cold front marks the leading edge of an advancing cold air mass. On a synoptic chart a cold front appear as a blue line with triangles. The direction in which the triangles point is the direction in which the front is moving.

Warm Front

A warm front marks the leading edge of an advancing warm air mass. On a synoptic chart a warm front appears as a red line with semi-circles. The direction in which the semi-circles point is the direction in which the front is moving.

Occlusion (or occluded front)

Occlusions form when the cold front of a depression catches up with the warm front, lifting the warm air between the fronts into a narrow wedge above the surface. On a synoptic chart an occluded front appears as a purple line with a combination of triangles and semi-circles. The direction in which the symbols point is the direction in which the front is moving.


Troughs

Fronts describe thermal characteristics. They also happen to be where there is significant precipitation. However, precipitation is not confined to fronts. Drizzle in warm sectors or showers in cold air occur fairly randomly, but occasionally, lines of more organised precipitation can develop. These are called troughs.

Isobars

Isobars are lines joining places with equal mean sea-level pressures (MSLP).

Fig 3: Identification of weather systems, isobars and front

Weather systems and fronts

Relationship between isobars and wind

Fig 4: Relationship between isobars and wind speed[/captio

Understanding station plots on a weather map

Fig 5: An example of a plotted chart

Good quality observations are one of the basic ‘tools of the trade’ for a weather forecaster.

The weather conditions at each individual station can be represented on a surface chart by means of station plot.

This means that information which would take up a lot of space if written on to a chart can be displayed in a quick easy to understand format.

Figure 5 shows an example of a plotted chart.

The land station plot can represent all the elements reported from that station, these typically include:

  • Air temperature
  • Dew-point temperature
  • Wind speed
  • Wind direction
  • Visibility
  • Atmospheric pressure and three-hour tendency
  • Cloud amounts
  • Cloud types
  • Cloud heights
  • Present weather
  • Past weather

Traditionally station plots for manned observing sites were based around a central station circle. However, increasingly, automatic weather observations are replacing these and being plotted on weather charts. To differentiate between the two, automatic observations are plotted around a station triangle. Each element of the observation, with the exception of wind, is plotted in a fixed position around the station circle or triangle so that individual elements can be easily identified.

Fig 6: Plotting positions on a station circle
Fig 7: A typical coded manual observation
Fig 8: A typical coded automatic observation

Plotting a station plot

Total cloud amount

The total amount of the sky covered by cloud is expressed in oktas (eighths) and is plotted within the station circle for manned observations or station triangle for automatic stations, by the amount of shading.

The symbols used for both manual and automatic observations are shown below.

Fig 9: Symbols for manual cloud cover
Fig 10: Symbols for automatic cloud cover

Wind speed and direction

The surface wind direction is indicated on the station plot by an arrow flying with the wind. Direction is measured in degrees from true North. Therefore a wind direction of 180 is blowing from the south. The wind speed is given by the number of ‘feathers’ on the arrow. Half feathers represent 5 knots whilst whole feathers indicate 10 knots. A wind speed of 50 knots is indicated by a triangle. Combinations of these can be used to report wind speed to the nearest 5 knots. The symbols used are as follows.

Fig 11: Symbols for wind speed

Air temperature

Air temperature is plotted to the nearest whole degree Celsius, i.e. 23 would indicate 23 degrees Celsius.

Dew point temperature

Dew point temperature is plotted to the nearest whole degree Celsius, i.e. 18 would indicate a dew point of 18 degrees Celsius.

Pressure

Pressure is recorded in millibars and tenths and the last three digits are plotted. Therefore 1003.1 would be plotted as 031 and 987.1 would be plotted as 871.

Present weather

In total the Met Office has 100 codes for recording the current weather at the time of the observation. Different types of weather are represented using different weather symbols, a key to which can be found below.

Fig 12: Symbols for present weather

 

Fig 13: Symbols for present weather

 

Fig 14: Symbols for present weather

 

Fig 15: Symbols for present weather

 

Fig 16: Symbols for present weather

 

Past weather

A simplified version of the present weather plots is used to indicate past weather.

Fig 17: Symbols for past weather

 

Pressure Tendency

Pressure trend shows how the pressure has changed during the past three hours, i.e rising or falling, and pressure tendency shows by how much it has changed. The tendency is given in tenths of a millibar, therefore ’20’ would indicate a change of two millibars in the last three hours. Pressure tendency is indicated by the following symbols.

Fig 18: Symbols for pressure tendency

 

Visibility

Visibility, which is how far we can see, is given in coded format, in either meters or kilometres. Visibilities below five kilometres are recorded to the nearest 100 metres, whilst those above five kilometres are given to the nearest kilometre.

For visibilities equal to and less than five km:

Fig 22: Example plot
Table 1: Codes for visibilities of less than five kilometres
Code
Distance (km)
Code
Distance (km)
Code
Distance (km)
00
<0.0
19
1.9
38
3.8
01
0.1
20
2.0
39
3.9
02
0.2
21
2.1
40
4.0
03
0.3
22
2.2
41
4.1
04
0.4
23
2.3
42
4.2
05
0.5
24
2.4
43
4.3
06
0.6
25
2.5
44
4.4
07
0.7
26
2.6
45
4.5
08
0.8
27
2.7
46
4.6
09
0.9
28
2.8
47
4.7
10
1.0
29
2.9
48
4.8
11
1.1
30
3.0
49
4.9
12
1.2
31
3.1
50
5.0
13
1.3
32
3.2
51
Not Used
14
1.4
33
3.3
52
Not Used
15
1.5
34
3.4
53
Not Used
16
1.6
35
3.5
54
Not Used
17
1.7
36
3.6
  
18
1.8
37
3.7
  

For visibilities greater than five km:

Table 2: Codes for visibilities of more than five kilometres
Code
Distance (km)
Code
Distance (km)
56
6
73
23
57
7
74
24
58
8
75
25
59
9
76
26
60
10
77
27
61
11
78
28
62
12
79
29
63
13
80
30
64
14
81
35
65
15
82
40
66
16
83
45
67
17
84
50
68
18
85
55
69
19
86
60
70
20
87
65
71
21
88
70
72
22
89
>70

Low cloud type

The type of low cloud present is provided in coded format, using the symbols below.

Fig 19: Symbols for low cloud type

Medium cloud type

The type of medium cloud present is provided in coded format, using the symbols below.

Fig 20: Symbols for medium cloud type

High cloud type

The type of high cloud present is provided in coded format, using the symbols below.

Fig 21: symbols for high cloud type

Cloud height

Cloud heights are measured in hundreds or thousands of feet. The way these are plotted varies depending on whether the station is an automatic or manned observing site.

For automatic stations, indicated by a station triangle, the following codes are used.

Table 3: Cloud heights for automatic stations
Code
Height in feet
00
<100
05
500
10
1000
15
1500
20
2000
50
5000
60
6000

For manned stations, indicated by a station circle, the following codes are used.

Table 4: Cloud heights for manned stations
Code
Height in feet
0
0-149
1
150-299
2
300-599
3
600-999
4
1,000-1,999
5
2,000-2,999
6
3,000-4,999
7
5,000-6,499
8
6,500-7,999
9
8,000 or above
/
Cloud height unknown

Gust speed

Gust speeds are measured in knots and proceeded by the letter G. Gust speeds are normally only recorded if they exceed 25 knots and are plotted as whole knots, i.e. G35 indicates a gust of 35 knots.

Example

The decode of this station plot is as follows:

Fig 22: Example plot
Type of observation:
Manned
Total cloud amount:
8 oktas
Wind Speed:
28-32 knots
Wind direction:
South-westerly
Air temperature:
23 degrees Celsius
Dew point temperature:
18 degrees Celsius
Pressure:
1004.2 millibars
Present weather:
Continuous moderate rain
Past weather:
Rain
Pressure tendency:
Falling 0.5 millibars in the past three hours
Visibility:
6km
Low cloud type:
Stratus
Low cloud amount:
6 oktas
Low cloud height:
1000 feet
Medium cloud type:
Altostratus
High cloud type:
Cirrus
Gust speed:
45 knots

 

Exercise

Why not try decoding the following observational plots.



Web page reproduced with the kind permission of the Met Office

Start exploring

Latest from blog

Related resources …
Secondary Geography
In this lesson we use the Central England Temperature record to explore changing UK weather and look at the projected impacts of climate change
Secondary Geography
The Great Smog of 1952 A fog so thick and polluted it left thousands dead wreaked havoc on London in 1952. The smoke-like pollution